
Truth, Honesty, Geeq, and the Importance of

Declarative Programming
The Problem

What is Bitcoin? Is it Satoshi’s 2008 paper? Is it the program (called a client) that Bitcoin min-
ing nodes run? The truth is, no one really knows, and at best, it is a moving target.1

Satoshi’s paper describes a consensus mechanism, but does not specify how it should be imple-
mented. It is more of a vision or an intention to be instantiated in code by developers and then run
by the validation network.

Bitcoin is not “the code” run by nodes either for at least two reasons. First, there are more than
ten Bitcoin clients currently in use written in different programming languages, for different operat-
ing systems, and optimized for different chip architectures. Second, all of these clients are patched
and updated continuously. None of these versions defines what Bitcoin is. If they disagree or
process transactions differently, none of them can claim that they are definitive and correct in any
abstract or absolute sense.

Each of these client versions is really an interpretation of Satoshi’s intention, or more accurately,
what the majority of nodes agree is the best evolution of his intention. In computer science, pro-
graming code is understood to be an “imperative” instantiation of a way of doing something. That
is, the code is a way of doing something, but does not in itself define what should be done. Client
code does not, and is not intended to, define what Bitcoin is. More to the point, Bitcoin code is not
law. How could it be? It changes almost daily.

Even if we agreed that one version of Bitcoin Core (the most popular client) defines exactly what
Bitcoin is, we would still be building on sand. This is because Bitcoin depends on external code li -
braries to do things like encryption, signature checking, hashing, and communications. Not all of
these are written and maintained by Bitcoin developers It is not clear that the existence of a privi -
leged, centralized group with such responsibility and authority would be consistent with Bitcoin’s
philosophical foundation in any event. Instead, these libraries are maintained, patched, and up-
graded by independent developers of all kinds.

This creates two obvious problems for projects like Bitcoin that aspire to be trustless and im-
mutable. First, as these libraries change over time, they do different things. Even if some version of
Bitcoin’s code-base were to be frozen, its dependencies would not be. Second, these dependencies
create a significant attack vector. One of these repositories could accidentally or intentionally deploy
an update with a bug that could damage client functions or make them vulnerable to adversaries. In

1 Bitcoin is only chosen as an example because of its importance and profoundly innovative contribution. Essentially all
coding projects are imperative in nature. The central thesis of this note is that imperative coding has uniquely trou-
bling implications in blockchain space.

1
John Conley August 1, 2024

effect, the Bitcoin community must trust in the integrity and the competence of Bitcoin Core devel-
opers, dependency maintainers, and miners who choose which client to run.

What to do

“Code is Law” is a wonderful goal, but it is simply unattainable using conventional approaches.
Technical papers are abstractions that express intentions but are neither specifications nor defini-
tions of truth or function. Imperative code does what it does, but there is no standard that allows us
to know if what it does is correct. We can’t trust what we can’t verify, and we can’t verify what has
never been defined. Clearly, what we need is a definition of what a protocol is supposed to do that
can be checked against what a client actually does. Computer scientists refer to this as “declarative”
programing.

Blockchain is data and data are bytes. To say a blockchain is correct is to make a declarative
statement that its bytes satisfy certain logical relationships to one another. A transaction is formally
be defined to be a byte string of a specific length, in a specific format, with specific subsets of these
bytes being interpreted as account addresses, signatures, header data, and so on. For a transaction
to be “correct” or valid, it must stand in certain well-defined relations to other data in the chain.

For example, the byte array representing the sending address must correspond to a byte array in
the current ledger state representing the same account address; byte arrays representing transaction
amounts and account balances also must stand in a certain, specific relation; a block must include
only valid transactions; and the new ledger state must follow specified accounting rules that take the
initial account balances and the transaction amounts as arguments.

This may sound similar to “unit testing”, but in fact, a declarative specification builds a funda-
mentally different foundation. Unit testing requires developing “code criteria, or results that are
known to be good, (and building them) into the test to verify the unit's correctness.” In other words,
unit testing involves choosing inputs from some domain of possibilities and then deciding that the
outputs are what the developer thinks they should be.

A declarative statement of a program or protocol is a code-independent definition of what a state
of a data structure must satisfy in order to be correct. How a state came into existence and how it is
updated is irrelevant. Unit testing is opaque to users who can’t know what criterion the developer
chose for “good” results, nor how carefully or completely the tests were conducted. With a declara-
tive statement, on the other hand, users are able independently verify that a blockchain, ledger, or
any other data set, is correct without having to trust anyone but themselves.

Nodes, of course, must use client software to validate and maintain the chain. Without a fixed
and complete definition of correctness, however, users can never know if the imperative instantia-
tion of code used by a node really does what the protocol is supposed to, even when the code is
“open source”. Declarative code is a necessary foundation for any project that ultimately seeks not
to rely on trust.

2
John Conley August 1, 2024

https://en.wikipedia.org/wiki/Unit_testing

Summary and an Example

1. Declarative code is a definition of truth and correctness. There is no such objective standard
when one relies solely on technical papers and imperative code implementations.

2. The declarative code never changes. Logic does not have bugs, as such, does not depend on
operating systems, chip architecture, or external code libraries. It does not need to be patched or
upgraded.

3. Nodes in a validation network run imperative implementations of the declarative specification.
These will have bugs, need patches and upgrades, refer to external libraries, and so on. Nodes may
run different clients or versions of clients as they choose. (Indeed, users can never really know what
code nodes choose to run.) The key difference is that if any node, for any reason, presents an out-
put that differs from the requirement of the declarative specification, then it is provably incorrect.

While this explanation may sound complicated, at root, it is very simple. As an example, addi-
tion is a well-defined operation. We all know that 2+2=4 and nothing else is correct. In practice,
numbers could be added together using a pencil and paper, on an abacus or a calculator, in a
spreadsheet, by a computer, or even by counting fingers. In fact, we neither know nor care how our
bank adds numbers together. If the bank claims anything besides 2+2=4, however, we know, and
can prove, that the bank did something wrong.

On the other hand, if we agreed that whatever number a calculator gave us was correct, we
would have to trust that the calculator was bug free, working correctly, and had not been altered by
someone who wanted to fool us. This is the basic difference between relying on declarative and im-
perative code.

Geeq and Proof of Honesty

A fundamental problem with Proof of Work, Proof of Stake, and other consensus protocols, is
that there is no definition of truth. Even if one magically existed, a sufficient majority of the
miners/stakeholders/nodes could simply agree to “validate” something that is clearly false or seems
to violate the common understanding of correctness. Users can neither prove that such nodes are
wrong, nor do would they have any meaningful recourse if they did.

Geeq uses a new consensus protocol called Proof of Honesty. In Geeq, there is no ability for a
set of nodes to decide to accept (and impose on others) an alternative reality. Our goal is to em-
power users to protect themselves and so not need to trust in the honestly or correctness of nodes
running black boxes of unknown software. Geeq’s protocol is build on foundation of declarative
code. If a node behaves dishonestly or even makes a mistake, it is detectable and provable by
users.

It would not even matter if a majority of nodes tried to claim something false was true. Users will
know, and can prove, that they are being lied to, and will refuse to accept as valid any incoming
transactions on such a ledger. After all, who would accept stolen tokens when they know other users

3
John Conley August 1, 2024

will also be able to see that the ledger is invalid and so will rationally refuse to accept these tokens
in the future? False ledgers are therefore ignored, and this means that there is no profit to nodes in
creating them.

Geeq starts with declarative protocol specification which enables its Proof of Honesty consensus
mechanism. In turn, this decentralizes its security guarantee to users at the edge where it belongs
instead of in the center and reliant on the honesty of the majority of the nodes in the validation net -
work.

4
John Conley August 1, 2024

	Truth, Honesty, Geeq, and the Importance of
	Declarative Programming
	The Problem
	What to do
	Summary and an Example
	Geeq and Proof of Honesty

