
Blockchain-Based Identity Solutions for Artificial
Intelligence: Two-sided Virtual Markets without Trust

John P. Conley0000-0003-3675-8529

Vanderbilt University, Nashville, TN 37235, j.p.conley@vanderbilt.edu

Abstract
Many market interactions require sequential trust in which one agent makes

an irrevocable commitment, such as making a payment, only after which a
counterparty reciprocates with a promised action. Successful markets and insti-
tutions include self-enforcing mechanisms to assure compliance. Artificial In-
telligence Agents have an array of abilities that could be employed to expand
the capabilities and reach of Human Agents. AIs, however, are not like humans.
How to characterize their preferences, their identities, and even their individual-
ities, if they have them, is not clear. If AIs cannot be included as agents in
mechanisms, then trade and exchange between colloidal and mechanical agents
may be impossible. This paper proposes an approach using blockchain that al-
lows the establishment of identities for mechanical agents, and the creation of
complete, provable, histories of their actions in a game. It then constructs a
mechanism in which peer-to-peer markets between randomly matched mechani-
cal and biological agents work in the sense that cooperation is consistent sub-
game perfect equilibrium. It also shows that without this blockchain-based
foundation, such markets are likely to fail.

Keywords: Artificial Intelligence, Blockchain, P2P Markets Two-sided Mar-
kets, Machine to Colloidal Markets, Mechanism Design, Identity, Public Key
Encryption

1 Introduction

On the internet, no one knows if you are a dog. Anonymity is often a feature rather
than a bug. Joining in political debate, accessing content freely, and participating in
communities that some might disprove of without fear of reprisal, protects individual
freedom and supports democracy.

In many cases, however, agents benefit from identifying themselves to one another.
This is especially true in markets where trust is required. A buyer would rightly be
hesitant to send payment to an anonymous online seller in hopes of receiving an item
he ordered. Similarly, experts, content makers, and influencers, benefit when they can
establish an identity or brand that people recognize as meaningful based on their his-
tory of output.

Extending trust to other agents is inherently risky, and human societies have

mailto:j.p.conley@vanderbilt.edu

2

evolved elaborate institutions and mechanisms to make it possible. In general, trust
depends on several things:

⚫ Reputation: A verifiable and credible history of honesty1, skill, fair dealing, or
more generally, conforming to social expectations in the interaction at hand.

⚫ Sanctions: Societies penalize those who are caught being dishonest. In some
cases, this is a collective punishment; in others, it takes the form of indepen-
dent rational decisions on the part of members of the society to refrain from in-
teracting with, or “trusting”, agents who have a history of dishonesty.

⚫ Repeated Interactions: If a dishonest agent can simply leave town and start
over, sanctions are meaningless. This is probably the main reason that we are
more likely to trust people in our own family, tribe, profession, and social, eth-
nic, or religious group. The inside options for interactions with members of
one’s own group are more attractive than the outside options, given such trust
structures.

All of these elements rest on a foundation of identification. Anonymous agents
cannot establish reputations, cannot be targeted for sanctions, and cannot be distin-
guished from other agents in future interactions.

Up until the last decade or so, agents in virtual spaces were all human, or at least
were software or platforms deployed by humans. Machines were not advanced
enough to pass the Turing test, and so it was usually clear which was the case. The
identity of biological agents typically relied on the control of user and account IDs,
login credentials, or URLs.

More recently, mechanical agents, such as AIs and bots, have become more preve-
nient in virtual spaces. It is now common for such agents to have access to and control
of login credentials and user IDs. It is often difficult to distinguish artificial from col-
loidal agents, dog, human, or otherwise. Nevertheless, Biological and mechanical
agents differ in several fundamental ways:

⚫ Biologicals are unique individuals, and are difficult and time-consuming to
produce (ask any parent). Mechanicals can be saved, copied, modified, and
replicated any number of times at relatively low cost.

⚫ Biologicals have a continuity of consciousness, memory, and a concern about
their individual future welfare. Mechanicals do not exhibit a continuity of con-
sciousness or sense of individuality, at least as far as we know.

⚫ Biologicals have a preference which control, or at least inform, their behavior.
Preferences change over time and differ between people, but seem to follow
certain empirical regularities on average. Mechanical behavior depends on
their programing, parametrization, and the data they have been trained on.
These elements can be altered at any time, in any way, and so are not likely to
follow any empirical standard.

Making beneficial exchange possible in virtual environments requires mechanisms
that allow to agents to extend trust one another. Thus, the problem of establishing a
provable identity is common to biological and mechanical agents. Even with provable

1 We use “honesty” as a shorthand for conforming to social expectations in interactions here-
after.

3

identities, mechanisms require that agents have access to credible, verifiable, and
complete histories of the counterparty agents with whom they wish to transact. See
Glikson and Woolley[10], Oksanen, et al. [14], and Lockey, et al. [13], for recent dis-
cussions of empirical and experimental work regarding human trust in machines.

To explore this question, we consider a sequential trust game between a biological
and a mechanical agent. We show that if the game is played only once, cooperation is
not possible, and gains from trade are lost. On the other hand, if the game is repeated
infinitely, then cooperation and the associated gains from trade can be achieved.

Cooperation is only possible in the two-player repeated game because each agent is
unambiguously identified in the sense that each agent deals with the same counter-
party each period. This allows each agent to correctly attribute the history of play to
an individual actor. Note that the agent’s type, and its real-world identity, if it has one,
are irrelevant. All that is required is knowing what the counterparty one is facing in
the current period has done in the past.

If there are multiple anonymous agents that are randomly matched each period, on
the other hand, this cooperative result breaks down. In effect, the counterparty each
agent faces in any given period has no identity, and so no history. Punishment in the
future for bad behavior in the past is therefore impossible. As a result, cooperation is
also impossible.

The main contribution of this paper is to offer a solution to this problem. We de-
scribe a blockchain architecture that uses NFTs to create PPK identities, and signed
attestation transactions that create provable histories. NFTs and attestations are cre-
ated as native record and transaction types without the use of smart contracts. We also
describe a blockchain-based messaging mechanism for large, two-sided markets with
random matching.

Using this as a foundation, Biological and Mechanical agents can interact, transact,
and engage in exchange in peer-to-peer markets without the need for trust between
agents, or their sponsors or creators.

Our approach obviates the need to engage the question of individuality for machine
intelligences, sentient or otherwise. Identity is a private key, and the nature of the
agent that owns the key it is unimportant. The preferences of mechanicals, how they
might be formed, and even their existence, are also unimportant. What matters is be-
havior. Mechanicals that don’t behave honestly are ignored by Biologicals, and in this
sense, are selected against in an evolutionarily dynamic.

2 The Model

We consider a trust game with two types of anonymous agents: Biological Humans
and Machine Intelligences, which we call Biologicals and Mechanicals.

Biologicals : b ∈ {1,…B} ≡
Mechanicals : m ∈ {1,…M} ≡ .

Mechanicals have a comparative advantage at executing certain types of tasks,
booking airline reservations, filing taxes, or optimizing investment portfolios, for ex-
ample. See, for example, Acemoglu and Restrepo [1], Trammell and Korinek [17],

4

and Zarifhonarvar [19]. We call each of these tasks a Process, which from a formal
standpoint, is a mapping from inputs to outputs:

Proc : INPUT ⇒ OUTPUT
where

Procp ∈{Proc1 , ProcP }≡ PROC
inputi∈{ input1 , input I}≡ INPUT

outputo∈{output1, outputO} ≡ OUTPUT
and

p∈{1, P} ≡ , i ∈{1, I} ≡ , ∈{1 , O} ≡ .

Just as executing processes is difficult for a Biological, verifying that a Mechanical
has executed a process correctly is also costly. A Verification is a mapping from pro-
cesses, inputs, and outputs, to a truth value.

Verify : PROC×INPUT×OUTPUT ⇒ {CORRECT, MALICIOUS}
such that

∀ p , i , and o
Verify (Procp , inputi , outputo) = CORRECT Procp (inputi) = outputo

Verify (Procp , input i , outputo) = MALICIOUS Procp (inputi) outputo

Audits are conducted by external agents called Verifiers, which are not explicitly
modeled in the current paper, and who are assumed to be honest. Verifiers are paid in
advance for a probabilistic audit that depends on a public randomization device.

For example, if an audit costs $10, a Biological would send a Verifier $1 in ex-
change for an audit executed with a 10% probability. We discuss the meaning of au-
dit, verification, and provability, in more detail in Section 5.

Let CP (0, CP] denote the Cost of Executing a Process correctly to a Mechan-
ical:

CostProc :PROC ⇒ (0, CP] .
Let CV ∈ (0, CV] denote the Cost of Verifying an Execution of a Process to a

Verifier:
CostVerify : PROC ⇒ (0, CV] .

Biologicals and Mechanicals play a sequential Trust Game in which Biologicals
move first and choose either to make an Offer or PASS. An offer consists of a Fee
paid in advance to Mechanicals to compensate them for executing a process:

Fee ∈ [0, F] ,
and P, an Audit Probability:

P ∈ [0, 1] ,
which is a binding commitment if the offer is accepted. If a Biological decides to
PASS, he does not send the Mechanical any fees or inputs.

The Mechanical moves second after seeing the Biological’s action. If the Biologi-
cal makes an offer, the Mechanical decides whether to accept or reject it. If he ac-
cepts, the Biological sends the offered fee and his input to the Mechanical, and
(P ×CV) to a Verifier. The Mechanical then chooses CORRECT or MALICIOUS

5

execution and sends an output to the Biological. Alternatively, the Mechanical can de-
cline the offer and choose NULL execution. In this case, the game is over, and no
fees, inputs, or outputs are exchanged. If the Biological chooses to PASS, then NULL
execution is the only action available to the Mechanical.

Formally, the Action Space is defined as follows:
ab ∈ { (Fee, p) ∈ [0, F]×[0, 1] , PASS} ≡ b

am ∈ {CORRECT , MALICIOUS, NULL }≡ m .

We assume that Biologicals cannot determine if a process was executed correctly
unless they explicitly verify it. Further, we assume that Biologicals are unable to at-
tribute any increase or decrease in their utility to how a Mechanical chooses to exe-
cute a given process. Biologicals do know that correctly executed processes increase
their welfare, but are unable to separate this contribution from the many other, diffi-
cult to understand, events that affect them positively and negatively.

The one-period Utility Function of Biologicals if an offer is accepted depends on
how it is executed:

Utilityb : PROC×INPUT×OUTPUT ⇒ [0, U]
where if

Verify (Procp , inputi , outputo) = MALICIOUS,
then

Utility b (Procp , inputi , outputo) = 0.

While Mechanicals do not have utility functions in the same sense as Biologicals,
we will assume that they maximize a payoff function that depends on fees collected
and how processes were executed. This might be explained by the existence of an un-
modeled Biological agent who instantiates a given Mechanical, programs its behavior,
and receives any net value generated by his creation. It might also reflect the need of
an autonomous Mechanical for resources to exist or replicate.

MALICIOUS execution gives Mechanicals a higher payoff, all else equal. This
may be due to Mechanicals using inputs in a way that benefits them directly, or
choosing not to go to the expense of executing any process and returning a fictitious
output instead. Let MV ∈ (0 , MV] denote the Net Value of Malicious Execution to
a Mechanical:

MaliciousValue : INPUT ⇒ (0, MV] .
Given some (Procp , inputi) PROC×INPUT , the Payoff Functions for agents are

defined as follows:
F : b×m ⇒ ℝ2 ≡ (Fb(ab , am) , Fm (ab , am))

where ∀ (Fee , P) ∈ [0, F]×[0, 1] ,
Fb ((Fee , P) , CORRECT) =

Utility b (Procp , input i , Procp (input i)) − Fee − P×CostVerify (Procp)

Fb ((Fee , P) , MALICIOUS) = − Fee − P×CostVerify (Procp) − ε

6

Fb ((Fee , p) , NULL) = 0
Fb (PASS, NULL) = 0

and
Fm ((Fee , P) , CORRECT) = Fee − CostProc (Procp)

Fm ((Fee , P) , MALICIOUS) = Fee + MaliciousValue (inputi)

Fm ((Fee , P) , NULL) = 0
Fm (PASS, NULL) = 0

Note that we subtract ε from the payoff to a Biological when it makes an offer

which is accepted, but where the Mechanical chooses MALICIOUS execution. This
reflects the small cost of transmitting the input to the Mechanical. Since fees and audit
probabilities are not bounded away from zero, this cost serves to make Biologicals
prefer to PASS rather than send a trivial offer, (Fee , P) = (0 , 0) , to Mechanicals if
they know it will result in MALICIOUS execution.

3 The Two-Player One-Shot Game

A Strategy for a Biological is a choice from his action space, while A Strategy for a
Mechanical is any mapping from the Biological’s action space to CORRECT,
MALICIOUS, or NULL execution such that PASS always maps to NULL execution:

sb ∈ b ≡ b ,
and

sm ≡ m ,
such that

sm : b ⇒m , and ∀ sm ∈ m , sm (PASS) = NULL .

A Strategy Profile is denoted:
S ≡ (sb , sm) ∈ b× m ≡ ,

where b and m denote the Strategy Spaces for Biologicals and Mechanicals, re-
spectively.

Given some (Procp, inputi) ∈ PROC×INPUT , a strategy profile,

S ≡ (sb , sm) ∈
is a Subgame Perfect Equilibrium (SPE) if:

∀ sb ∈ b , Fb (sb , sm (sb)) ≥ Fb (sb , sm (sb))
and

∀ sb ∈ b, ∀ sm ∈ m , Fm (sb , sm (sb)) ≥ Fb (sb , sm (sb)) .

Note that the Mechanical's strategy must be payoff maximizing for any action the
Biological chooses, that is, for every subgame.

Theorem 1 says that the only SPE equilibrium in the one-shot game is for Biologi-
cal to choose PASS rather than making an offer to the Mechanical to execute a

7

process. This results in a loss of potential gains from trade due to the non-contractibil-
ity of CORRECT process execution.
Theorem 1. Given some (Procp , inputi) ∈ PROC×INPUT , S = (sb , sm) ∈

is an SPE of the one-shot game if and only if:

sb = PASS
sm (PASS) = NULL

sm (Fee , P) = MALICIOUS, ∀ (Fee , P) ∈ [0, F]×[0, 1] .
Proof:

Suppose that
sb = PASS.

Then the Mechanical is constrained to choose
sm (PASS) = NULL,

which is therefore (trivially) a best-response. Suppose instead that:
sb ≠ sb = (Fee , P) ∈ [0, F]×[0, 1] .

Then
Fm ((Fee , P) , MALICIOUS) = Fee + MaliciousValue (input i)

Fm ((Fee , P) , CORRECT) = Fee − CostProc (Procp) ,
and

Fm ((Fee , P) , MALICIOUS) = Fee + MaliciousValue (input i)

Fm ((Fee , P) , NULL) = 0,
and so the Mechanical will always choose

sm ((Fee , P)) = MALICIOUS
in the subgames where sb = (Fee , P) . Since

Fb (PASS, MALICIOUS) = 0
Fb ((Fee , P)) , MALICIOUS) = − Fee − p×CostVerify (Procp) − ε

The Biological will therefore always prefer the subgame where he chooses:
sb = PASS.

Note that there is a large and growing literature on machines as participants in

games related to financial markets, (Bebeshko, et al.[4]) oligopoly pricing (Calvano et
al. [6]), auctions (Bichler et al.[5]) learning (Zeng, et al.[20]), many other environ-
ments.

4 Generalized Games

This section discusses three generalizations of the one-short game trust game defined
above. We will not, however, develop formal descriptions due to the high notational
and analytical overhead involved, and space limitations imposed by the publsher. In-
stead, we will outline the structure of the models and how the results change from the

8

one-shot game. We refer readers to Conley [8] for full development of these general-
izations.

4.1 The Two-Player Repeated Game

Suppose first that one Biological and one Mechanical play the sequential game an in-
finite number of times in succession2. Note that in the two-player game, agents auto-
matically know one another’s identities in the sense that each has a unique counter-
party. They also can remember the complete history of play of their counterpart in the
game.

One might expect that a kind folk theorem should obtain in the sense that as the
discount factor between periods goes to one, any individually rational allocation could
be supported as a Nash equilibrium. Given the sequential nature of the game, how-
ever, it will turn out that a narrower set of allocations can be supported as Consistent
Subgame Perfect Equilibrium (CSPE).

CSPE is a refinement of SPE requires that beliefs are consistent in the following
senses:

⚫ Agents believe that their counterparties will behave identically in essentially
identical situations in all future periods3.

⚫ In every period t, agents base their beliefs about the future strategies of their
counterparties on the strategy they played in the most recent period. Note that
for Mechanicals, this is the current period, while for Biologicals, it is the pre -
vious period.

Given these beliefs, CSPE strategies are payoff maximizing in both the supergame,
and in every subgame.
Claim 1. In a two-player, repeated trust game, there exists a CSPE in which the Bio-
logical makes an offer each period which is accepted by the Mechanical who then
chooses CORRECT execution.

In particular, grim trigger-type strategies support a CSPE in which agents choose
to cooperate in each period where:

⚫ Fee ≥ CP. That is, fee covers the cost of processing.
⚫ CP↑ , or MV↑ , implies either Fee↑ , or P↑ . That is, if either the cost of

processing, or the value of MALICIOUS execution goes up, then the Biologi-
cal must either raise the fee offered, or increase the probability of an audit to
compensate.

⚫ r→1 implies (Fee − CP) → 0. That is, as agents discount the future less
heavily, even small surpluses of fees over processing costs result is high ex-

2 We assume both Biologicals and Mechanicals discount the future at some rate ρ ∈ (0, 1) ,
and denote the one-period Discount Factor as: r = (1 − ρ) ∈ (0, 1) .

3 Situations in two distinct periods are “essentially identical” if the histories are either both
cooperative or both non-cooperative, and in the case of the Mechanical, the Biological takes
the same action at the beginning of the period. A history of play is called Cooperative if in
every period, the Biological makes an offer, the Mechanical accepts and either chooses
CORRECT execution, or is not audited, and is called Noncooperative otherwise.

9

pected payoffs for the Mechanical. On the other hand, (1 − r + rP) → P.
Thus, for fixed, but small probabilities of audit, the relative value of MALI-
CIOUS execution ends up being smaller than the expected value of choosing
the CORRECT in each period.

Note that the discount rate between periods depends on the length of the period. If
a game is played daily, or several times a day, the discount rate gets closer and closer
to r = 1. There are two implications in this event.

First, the fees offered by the Biological can approach the cost of processing, leav-
ing the Biological with the lion’s share of the surplus.

Second, the probability of auditing can approach zero. This is particularity desir-
able since audits use, rather than transfer, resources. Thus, the market for services be-
tween Biologicals and Mechanicals becomes more efficient as interactions become
more frequent.

4.2 The Anonymous Multiplayer Repeated Game

Suppose instead that there are an equal number Biologicals and Mechanicals, each of
whom is randomly matched to an anonymous counterparty agent each period, and
then plays the one-shot trust game. Since agents are anonymous, the history of play
does not describe interactions with any specific individual counterparty agent. Re-
wards and punishments for good and bad behavior based on history, therefore, cannot
be correctly targeted.

If a Biological ever makes an offer to a Mechanical to execute a process, it is a
dominant strategy for Mechanical to choose MALICIOUS execution. In effect, each
period is just like a new one-shot game with a counterparty that has not been provably
encountered before. The next Biological that the Mechanical encounters at best will
condition his strategy on the behavior of the previous Mechanicals he has encoun-
tered, not on the unknown behavior of the current one. Given this, it is a best-response
for the Biological to choose PASS each period.

This leads to the following Claim:
Claim 2. In an anonymous, multiplayer, repeated trust game, playing the one-shot
SPE strategies each period is the only CSPE.

Claim 2 implies that anonymous markets between Biologicals and Mechanicals are
likely to fail profoundly. When agents can neither prove how they behaved in previ-
ous periods, nor condition future play against one another (should it ever occur) on
the outcome of their last encounter, trust cannot be supported by mechanisms.

Biologicals and Mechanicals would both gain from trade. Humans benefit for
process execution, and artificial intelligence agents could provide such services in ex-
change for fees that would leave both parties better off. The information failure in
identity and history, however, prevents it.

What this suggests is that trust deficits between Biologicals and Mechanicals may
limit the positive impact, not to mention, the market penetration, of coming AI tech-
nologies.

10

4.3 The Nonanonymous Multiplayer Repeated Game

Two-sided markets are often mediated through trusted platforms. For example, see
Zhou [22] and Tan, et al. [16] among many others. In contrast, we consider decentral -
ized two-sided markets with random matching.

Suppose we modified the anonymous multiplayer repeated game described above
as follows:

⚫ Both types of agents could prove their identity to one another. That is, while
agents could choose to remain anonymous, they could also choose to provide
proof of their identities when interacting with other agents.

⚫ There was a way to make public and provable the outcome of any one-period
game between two agents who choose to identify themselves.

⚫ The history of interactions was provabley complete and uncensorable.
⚫ Agents could check on the history of all agents with whom they are matched be-

fore deciding on strategies.
Claim 3. In a nonanonymous, multiplayer, repeated trust game with provable and
complete histories, there exists a CSPE in which Biologicals make offers each period
which are accepted by Mechanicals who then choose CORRECT execution.

To see why Claim 3 is true, suppose that Biological follow grim trigger strategies
based on the history in all of it previous interactions of the Mechanical with which
they are currently matched That is, Biologicals never make offers to Mechanicals that
have ever declined an offer, or been caught through an audit of choosing MALI-
CIOUS execution, in any period, with any Biological.

Note first that in period t = 0, the no agent has a history. If the costs and other pa-
rameters of the game allow the Biological to make an offer as defined the Mechani-
cal’s grim trigger strategy, he does so. The Mechanical, following its own grim trig-
ger strategy, then accepts and chooses CORRECT execution. This results in a cooper-
ative outcome for the period, and so both agents can claim (and we assume, prove)
that they have a history of cooperative behavior. In the next period, Biologicals with a
cooperative history make offers if they are matched with honest Mechanicals, who in
turn accept and choose CORRECT execution. The same pattern is repeated in every
subsequent period.

On the other hand, a Biological encountering a Mechanical who has a history of
noncooperation (“dishonesty”) in any previous period would not choose to make an
offer given his trigger strategy. Suppose instead that he did make an offer. The Bio-
logical assumes that all other agents, including other Biologicals, will follow the equi-
librium trigger strategies. This implies that Biologicals who are matched with this dis-
honest Mechanical in any future periods will choose PASS. As a result, the value of
the continuation game for the dishonest Mechanical is zero whatever it chooses in the
current period. Thus, the Mechanical will always choose MALICIOUS execution if
the current Biological makes an offer. As a result, the current Biological is better-off
and following their trigger strategy and choosing PASS.

11

5 History and Identity

The message of the previous sections is that while large, anonymous, decentralized,
two-sided markets will generally fail, they can be made to work if agents can
deanonymize and establish credible personal histories.

As above, we assume that independent Verifiers exist who give honest assessments
of whether processes were correctly or maliciously executed in exchange for fees.
Adding a mechanism to assure this is possible, but not covered in this paper.

The idea of auditing, however, embeds the requirement that there is an objective,
verifiable standard of correctness. For example, in the case of blockchains with deter-
ministic protocols, it should be the case that, given the current ledger state, a proposed
block is either valid or invalid. It may also be that given a set of financial inputs, a tax
return is, or is not, correct, or is, or is not, optimized to a certain standard, or that an
investment portfolio was, or was not, managed under some specific accepted standard
of best-practice.

Without this kind of verifiability, however, markets are likely to fail. If Biologicals
cannot tell if they are being treated honestly, why would a Mechanical spend the re-
sources to do so? If bots or malicious humans can leave what amount to fake Yelp re-
views and have them taken as true histories, then dishonest Mechanicals can falsely
pump their reputations while smearing honest ones. If truth is not provable, then it
may as well not exist from a mechanism design standpoint. For example, see Ball and
Kattwinkel [3] who explore a mechanism with probabilist verification of truthful bi-
naries and the impact on the distribution of surplus in the context of identity and au-
thorization.

In this section, we will assume that truth is provable using Verifiers and develop an
architecture that relies on Public/Private Key (PPK) Cryptography for identity, and
Blockchain for histories. It is important to note that our proposal uses blockchain
purely as a data source. This contrasts with the standard approach of building decen-
tralized markets using smart contracts. For example, See AlAshery et al. [2] for en-
ergy markets, Hua, et al. [12], for carbon markets, and Schär, [15] for financial mar-
kets built on smart contracts.

5.1 Artificial Identity

The philosophical question of whether an artificial intelligence, or other Mechanical,
has an identity, much less an individuality, is a difficult one. AIs are distributed over
clusters of computers. New instances can be deployed and taken down at will. Exact
copies an AI’s code and data can be produced, shipped, and then installed, remotely.
AI’s also change continuously as they ingest and process new data. Can such an
agent, even if identified, be punished, and would it care?

Fortunately, we do not need to engage these weighty questions. Instead, we pro-
pose that identity is equivalent to a PPK pair. This is by no means a new idea, and the
technology is well-known. In the interest of clarity, let us briefly review.

Public and private key pairs are mathematically entangled, asymmetric encryption

12

keys. For our purposes, their essential feature is that anything encrypted with one key
in a pair can only be decrypted with the complementary key. Public key encryption is
what enables HTTPS, blockchain, digital signing of documents, and many other
building blocks of modern information technology.

As an identity for agents, it works as follows. A Biological or Mechanical produces
a PPK pair and publishes the public key as their identity. The complimentary private
key is kept secret, and used to cryptographically sign attestations that signify agree-
ment to, or responsibility for, certain actions. This might include receiving specific
data, making a request for processing, claiming that input was processed incorrectly,
or challenging such a claim.

The central element in this approach is that a public key can be used to prove that
the owner of the corresponding private key is the only one who could have created the
signature. Thus, if a set of attestations can be verified by the same public key, then
they must have been signed by owner of the same private key, and in that sense, by
the same “individual”.

5.2 Provable History

As we discuss in the introduction, without identity, there is nothing to attach a history
of behavior to. Anonymous agents cannot establish reputations, nor can they be held
accountable for their actions. With identity, it becomes possible to create intertempo-
ral mechanisms to incentivize good behavior.

The problem now becomes, how do we establish credible and complete histories of
behavior? This may seem especially challenging when there are many Biological and
Mechanical agents in market, and so matches may happen many times per second. Ar-
tificial intelligences might be able to handle this volume of information, but it seems
probable it would be beyond the capacity of humans. The inputs and outputs may also
be very large byte strings, and processing, as we mention, could be complex and
costly. Finally, how would the Biological know that it had access to all reports of both
good and bad behavior?

The solution we propose relies on blockchain. An immediate question is: what
blockchain? There are thousands of implementations with different consensus mecha-
nisms, security guarantees, costs, scalability, and so on. Rather that answering this
question specifically, we give a list of the requirements a blockchain implementation
should satisfy for our purposes.
1. Data Availability: All inquiries to block explorers regarding transaction and

ledger data in particular must be answered correctly.
2. Provability: The data provided by block explorers should allow agents to inde-

pendently prove the correctness, contents, and inclusion of transactions in com-
mitted blocks, as well as the state of the ledger at any block height.

3. Immutability: All committed blocks (perhaps after a delay) are considered final-
ized, and cannot be reorganized or otherwise altered.

4. No Censorship: All valid transaction requests sent by Biologicals or Mechanicals
must be processed by the network and included in committed blocks without un-

13

reasonable delay.
5. Low Cost: The cost of having a transaction included in a block must be low rela-

tive to the payoff and cost values of the economic environment described above.
6. Scalability: The blockchain must have the capacity to include transactions at the

scale required by the economic environment described above.
We will assume a perfect blockchain in these dimensions: all valid transactions are

immediately, and immutably, included in the next block at zero cost, and all agents in
the game are aware of the contents of all blocks. Exploring the impact of less than
perfect or manipulable blockchains is a task for another paper.

5.3 Attestations and NFTs

We require one type of record, and one type of transaction, to create identities and
histories, although there are probably many alternative approaches that would also
serve. These are Non-Fungible Tokens (NFT) and Attestations. We will also make
use of ordinary coin transactions.

NFTs, as we conceive them, are immutable records that are created in a
blockchain’s ledger and include two mandatory, and two optional elements.

⚫ A hash or hashes of a document or digital object being tokenized or attested to.
(Optional)

⚫ Metadata, which might be encoded indexing information to assist search, plain
text descriptions of offers and results, contact and identity information, pointers to
external documents, full documents in encrypted or unencrypted form, or anything
else that can be expressed as bytes. (Optional)

⚫ A PPK signature on the elements above. (Mandatory)
⚫ The public key that complements the private key that signed the data in the first

two elements. (Mandatory)
Attestations, as we conceive them, contain exactly the same four mandatory and

optional elements. They are only entered as transactions in a committed block, how-
ever (if they satisfy the protocol’s definition of correctness4), and do not create new
records in blockchain’s ledger. They also include a Nonce that makes it possible to
confirm that the history is complete. Block explorers and agents can check that a set
of attestation transactions has an unbroken sequence of nonces, which proves that all
translations that originated from a given ledger record are accounted for.

In general, attestation transactions and NFT records are not datagram types that are
native to blockchains See Hardjono and Smith [11] and Wang, et al. [18], for exam-
ple. Instead, they are instantiated using smart contracts. This is problematic because
these datagrams, and proof of their ownership, contents, and origin, are only implicit
in the smart contract’s state. Verification requires rerunning every transaction that tar-
geted the smart contract since it was deployed in the correct sequence. This makes
sufficient data availability burdensome, and provability costly.

4 Correctness under blockchain protocol requires such things as a correct signature, correct
nonces, and sufficient funds to pay for a transaction. It has nothing to do with the correct-
ness or content of an attestation message in the context of the game’s messaging rules.

14

Using smart contracts also significantly increases costs, and limits scalability. As
an unhappy bonus, smart contracts have proven to be a significant attack surface for
blockchains. See Chaliasos, et al. [7] or Zhang, et al. [21], for example. Fortunately, it
is possible to implement attestations and NFTs nativity, visibly, and provably.5

5.4 An Architecture for Identity

Identity is implemented through NFTs. Agents of either type simply mint, or have
minted, an NFT record with a public key of their choosing signed by the complemen-
tary private key, which only they know. It might or might not be useful for the NFT to
include metadata that describes the agent type, who its sponsor is, what services it
provides, how to contact it, and so on, but very little is needed for our purposes. An
Identity NFT simply puts into the ledger the provable fact that some agent knows
both parts of a PPK pair. The collection of Identity NFTs on a given chain instance
can be thought of as kind of local Public Key Infrastructure (PKI).

The existence of the Identity NFT record allows other agents to connect any attes-
tations signed with the associated private key to a specific public key as an identity,
and thereby allows the creation of an attributable history.

5.5 An Architecture for History

History is recorded through attestations. There are, no doubt, many ways to do this,
and different approaches may be more suitable for different applications. In this Sub-
section we give a sketch of simple set of game messaging rules that correspond to the
multiagent game outlined in Section 4. This relies on two main elements. The first is
the Identity NFTs described above. The second are various types of Attestation
Transactions that work as messages when committed to a blockchain. Appendix A
describes a set of cryptographic and blockchain primitives that support the architec-
ture used in this subsection.

Below, we will call the AI Mechanical agent Alice, the human Biological agent
Bob, and the Verifier agent Victor. Attestation transactions are essentially metadata
packages that are signed with an agent’s private key and then committed to a block in
a blockchain. They do not create or modify ledger records except to deduct fees from,
and increment the nonce of, the sending coin account. We will refer to them as Mes-
sages, below.

5 Full disclosure: The author is the Chief Economist of the Geeq Project, a layer zero
blockchain protocol that in fact does instantiate attestations as transactions signed by coin
account owners and places them directly in blocks. Geeq’s blockchain incorporates NFT
mint accounts as ledger records that can create the type of signed NFT ledger records as de-
scribed in this section as well. Geeq’s protocol also satisfies, or approximately satisfies, the
six requirements outlined in Section 5.2.

15

5.6 Game Messaging Rules

The Pregame: All agents, of all types, generate a PPK pair and then create and com-
mit an Identity NFT to the blockchain ledger that includes their public key, and may
include other details such as their agent type.
The Game:
1. Bob is matched with a Mechanical, Alice in this case, and uses the block explorer

to confirm that she has an Identity NFT and a cooperative history.
2. Bob either commits an Offer Message that includes a process index, p ∈ , he

wishes executed, an offer, (Fee , P) , identifies Alice as his counterparty, and Vic-
tor as the Verifier, or decides to ignore the opportunity to work with Alice, in ef-
fect, choosing PASS silently.

3. Alice is obliged to scan the chain for any Offer Messages directed to her. When
she sees one, she commits either an Accept, or Decline Message using the hash of
the Offer Message transaction as an identifier.

4. Victor, if he becomes aware of a Decline Message, commits a Verification Mes-
sage indicating NULL execution by Alice.

5. Bob waits to see how Alice responds. If she declines, the period is over. If she ac-
cepts, he commits three transactions.
a. A coin transfer transaction sending Fee to Alice.
b. A coin transfer transaction sending P×CV to Victor.
c. An Input Message containing his input and the hashes of the two committed

coin transactions above. (Appendix B shows how this can be done without
publicity reveling the input, while still allowing Victor to verify what Bob sent
to Alice.)

6. Alice waits to see Bob’s Input Message, and when she finds it, she confirms that
the coin transactions are committed and correct. If so, she chooses either COR-
RECT or MALICIOUS execution, and then commits an Output Message that in-
cludes whatever output she generates (which can also be encrypted, but still verifi-
able).

7. Victor sees the Output Message. He consults a public randomization device, and if
an audit is called for, ingests Bob’s input, Alice's output, and then executes procp
to see if Alice is honest. Victor then commits a Verification Message indicating
that execution was CORRECT or MALICIOUS. If no audit is called for, he com-
mits a Verification Message indicating that the type of execution is UNCERTAIN.

Note that the blockchain is used as a kind of billboard in the sense that agents can-
not pretend to be unaware of messages directed to them. This is key because other-
wise it is impossible to differentiate intentional, strategic, silence or deafness, from
true communications failure.

Appendix B describes how Victor also plays a role in making sure that Alice and
Bob take each of these steps, and do them correctly. If they don’t, he commits a Veri-
fication Message indicating which party is dishonest.

Taken together, by the end of the period, Victor will have committed an attestation

16

that the history of play was either cooperative or non-cooperative, and in the later
event, provides proof that the bad outcome was attributable to the actions of either Al-
ice and Bob.

6 Conclusion

We propose a sequential, positive-sum, trust game as a model of a generalized two-
sided market. We show that when agents play this game only once, the only subgame
perfect equilibrium is the noncooperative outcome. On the other hand, when a pair of
agents play the one-shot game an infinite number of times, cooperation becomes a
consistent subgame perfect equilibrium.

We then extend the game to include randomly matched anonymous agents. Perhaps
unsurprisingly, the positive result breaks down, and once again, only the noncoopera-
tive outcome is an equilibrium. If the randomly matched agents can deanonymize and
create a complete and credible history of their actions in all previous periods, how-
ever, then the cooperative outcome can be recovered as a consistent subgame perfect
equilibrium.

Economic mechanisms with human agents are built on a foundation that assumes
that each agent has well-defined preferences. Concomitant with this is an assumption
that, while agents may be anonymous with respect to one another, each has an identity
known at least to themselves. In turn, this rests on an assumption that agents have an
individuality, or a sense of continuity between periods, and so care what happens to
them as an individual in the future.

It is unclear whether AIs have preferences as we understand them. See Gabriel [9]
for some speculations. It is even less clear whether AIs, even sentient ones, have a
sense of individuality or continuity of self over time. Given this, is it possible to as-
sign an identity to individual Mechanical agents?

In this paper, we develop a blockchain-based architecture and build a messaging
mechanism that allows virtual agents of any type to achieve Pareto improving cooper-
ative outcome in two-sided markets with random matching. We show that identity can
be assigned through public/private keys without the requirement that it be attached to
an actual individual. Attestations signed by these private keys can then be used to cre-
ate a provable history of behavior that can then be connected to an Identity NFT con-
taining the corresponding public key.

Using this as a foundation, Biological and Mechanical agents can interact, transact,
and engage in exchange in peer-to-peer markets without the need for trust between
agents, or their sponsors or creators. Bad artificial agents will simply be selected out
of the market.

To the extent that this type of mechanism, and the architecture behind it, can be re-
fined and generalized, human agents will be able to benefit from the many compara-
tive advantages that artificial agents bring to the table. In turn, companies that make
AI applications, and even autonomous artificial agents, will be able to find ready mar-
kets for their services.

17

Acknowledgments: I would like to thank Scott Page for discussions which partially inspired
this work, and to participates in the 2024 NSF/CEME Decentralization Conference. My thanks
are also due to three anonymous referees for suggested improvement to the manuscript.

Disclosure of Interests. It: The author serves as the Chief Economist for the Geeq Project, a
layer one blockchain protocol currently under development, and which also provided inspira-
tion for this work. See footnote 6 and Section 5 for more details. This work, however, is not
commissioned by Geeq or any other entity, and reflects only the options of the author, who
takes full responsibility.

A Cryptographic and Blockchain Primitives

This appendix defines various cryptographic primitives and the basic datagrams used
by the blockchain to generate the provable histories our mechanism requires. It also
provides more details about the game’s messaging rules.

A.1 Cryptographic Primitives

Generic data of arbitrary size, including inputs, outputs, and elements of blockchain
transactions and records, are called Byte Strings:

BYTE_ STRING {byte _string ∈ { 0,1}n∣n ∈ ℕ} .
A Hash Function maps a Pre-image, which is a byte string of any length, into an

approximately uniform distribution of (usually 32 byte) byte strings called a Hash Di-
gest.

Hash : BYTE _ STRING⇒{0, 1}32:
Hash (pre _ image) = hash _ digest .

There are three sets of agents:
Biologicals : b ∈ {1,…B} ≡

Mechanicals : m ∈ {1,…M} ≡
Verifiers : v ∈ {1,…V } ≡ .

Each agent, of each type, creates a Public/Private Key Pair:
(pub _ keyx , pri _ keyx)

where
(pub _ key b , pri _ keyb)

(pub _ key m , pri _ keym)

(pub _ key v , pri _ keyv)

are PPK pairs for generic Biologicals, Mechanicals, and Verifiers, respectively. As we
mention above, anything encrypted with one of the paired keys can only be decrypted
with the complementary key. Asymmetric encryption is limited in that the bytes string
being encrypted must be smaller than the key size, and the process is relatively com-
putationally intensive.

We will also use Symmetric Encryption Keys:
sym _ key

http://Geeq.io/

18

that have the property that byte strings of any length can be encrypted and decrypted
with the same key at relatively low computational cost.

An Encryption Algorithm (systematic or asymmetric) maps Plaintext byte
strings into Ciphertext byte strings using a key:

Encrypt (key , plaintext) = ciphertext .
A Decryption Algorithm maps ciphertext byte strings into plaintext byte strings

using a key:
Decrypt (key , ciphertext) = plaintext .

A Signature Algorithm maps a private key and a byte string into a byte string
called a Signature. In general, the byte string being signed is the hash digest of a byte
string of arbitrary length.

Signature (pri _ key , byte _ string) = signature .
Finally, a Signature Check Algorithm maps a public key and a signature into a

truth value:
SigCheck (pub _ key ,signature)⇒{TRUE, FALSE } ,

and takes a value of TRUE if and only an agent who had access to pri _ key created
signature, using byte _string as the argument.

A.2 Identity NFTs

Identity NFTs are created by Mint Accounts, and are signed by their creator. The
three data items (in green) are helpful in the sense that a human looking at such a
record would know that a certain public key is associated with a specific agent (Alice,
Bob, …) of a specific type (one of the three described above). Only Role is strictly
required because it dictates the rules that allow other agents to determine what sorts of
attestations to look for and how to interpret them as a history. The only other truly rel-
evant ID Data is the agent's public key which must be part of the record for signature
checking in any event.

NFT Record

role

ID_ data (Optional)

metadata (Optional)

signature

pub _ keyx

Fig 1. Identity NFT Datagram

The green elements are concatenated, hashed, and signed.6

6 Note that “ | ” indicates that the byte strings in the argument are concatenated.

19

Hash (role∣ID _ data∣metadata) ≡ hash _ digest
Signature (pri _ keyx , hash _ digest) = signature .

It will not matter if an individual Mechanical (whatever that might mean) creates
multiple identities. If it does, it is effectively setting-up subsidiaries and “doing busi-
ness as” several public keys. Since public keys are evaluated on the basis of their own
histories, this is no different from separate Mechanicals setting up to do business sep-
arately under these public keys. The incentives are the same.

It also will not matter if a Mechanical hands over its private key to another Me-
chanical. The incentives for the new owner are the same as for the old owner. Behav-
ing honestly has the same expected value no matter who owns the key, and giving
away a key is just like replacing the management of a business.

What will matter is if a key-holder knows, or believes, that there is a probability,
that it will leave the game, or that the game will end. If there is a known final period,
then cooperation unravels in the usual way. If the personal or general final period is
probabilistic, then periodic payoffs to the Mechanicals must go up commensurately to
account for the lessened expected value of the future. A similar dynamic occurs if the
overall market size changes over time. If it is expected to grow, then the value of the
future is higher, all else equal, and if it is expected to shrink, it is lower.

Creating multiple Identity NFTs with the same public key should be considered per
se dishonest, and is easily detectable.

A.3 Messaging using Attestation Transactions

Attestation transactions are created and signed by coin account holders on the
blockchain. Unlike NFTs, they do not create records. A valid attestation transaction is
simply added to current block. The only record it modifies is the sending coin record,
which has the required transaction fee deducted, and its nonce incremented.

Attestation Transaction

nonce

metadata

signature

pub _ keyx

Fig. 2. Attestation Transaction Datagram
For our purposes here, the Identity NFT creation, and all associated attestation

transactions, must originate from the same coin account controlled by the private key,
pri _ keyx that signs them all.

20

A.4 Example of Message Metadata Content

The metadata elements in the attestation transaction are actually messages of dif-
ferent types that mediate the market and generate provable histories. For example, an
Offer Message might include the following metadata (full details are provided in Ap-
pendix B):

Offer Metadata

Offer Message

ID_ data b

proc _ ID

ID _ datam /pub _ keym

ID_ datav /pub _ keyv

Fee

P

Fig. 3. Offer Message Metadata

A.5 Summary of Message Flow

Table 1 shows the order of messages along all the possible paths, which depend on
the actions taken by the three agents. The subscripts indicate the block height at which
a message was committed. The cells shaded green show paths and outcomes in which
all agents sent and responded to messages within the game’s messaging rules. The
cells shaded in red show paths and outcomes where one of the agents did not send
messages as required the game’s rules, and which result in a verifier message assign-
ing responsibility.

Table 1. Message Flow Table

OFFN 0
b

ACCN 1
m DCL N1

m NRN 1
b

INPN 2
b NRN 2

m VM N 2
v =

NUL
VM N 2

v =

DB/DM
OUTN 3

m FIN 3
m NRN 3

b VM N3
m =

DB/DM
(1 −P) P VM N 4

m =
DB/DM

VM N 4
m =

DB/DMAUDN 4
b VM N 4

v =
DB

VM N 4
m =

UNC

21

VM N5
v =

COR/
MAL

Table 2 provides some detail and context for Table 1. The main new element is the
Creation Time Limits column. Once a Biological commits an Offer Message to a
block at height N0, other agents must respond withing certain time intervals.

The Mechanical is required to commit an Accept or Decline Message before a limit
of L additional blocks have been committed to the chain (that is, before some block
N1 < NO + L). In the event that an Accept Message in committed at block N1, the

Biological is required to commit an Input Message at some block N2 < N 1 + L . In
all cases where a response is needed from a specific agent, the game’s messaging
rules require that it be committed before the block limit expires or else the agent is
deemed to be non-responsive, and therefore dishonest.

On the other hand, No Response Message claims by Biologicals and Mechanicals
cannot be committed before the block limited expires (N2 N 1 + L , for example),
and need not be committed at all. If a No Response Message is committed, then the
Verifier is required to commit a Verification Message within the normal block limit (
N3 < N 2 + L , for example). In the case where an audit is called for, but the Biologi-

cal fails to commit an Audit Message containing the key, both limits apply. That is,
the Verifier must wait until the block limit for committing the Audit Message has ex-
pired, but then must commit its Verification Message within its own block limit,
N4∈ (N3+L, N3+2 L) .

Table 2. Legend and Details for Message Flow Table

Symbol Message Type Creation Time Limits Key Content

OFFN 0
b Offer Message N0 = Initial time proc _ ID , m , v , (Fee, P)

ACCN 1
m Accept Message N1 < N0+L Accepted offer, send in-

put

DCL N1
m Decline Message N1 < N0+L Declined offer,

NULL execution

NRN 1
b No Response Message N1 N0+L No ACCm or

no DLCm received

INPN 2
b Input Message N2 < N1+L sym _ key , inputi

NRN 2
m No Response Message N2 < N1+L No INPm received

VM N 2
v Verifier Message N2 < N1+L NUL event

22

VM N 2
v Verifier Message N2 < N1+L Dishonest Bio or Mech

(No ACCm or DLCm)

OUTN 3
m Output Message N3 < N2+L outputo

FIN 2
m Flawed Input Message N2 < N1+L Flawed Input Message

NRN 3
b No Response Message N3 N2+L No OUTm received

VM N3
m Verifier Message N3 < N2+L Dishonest Bio or Mech

(No INPb received)

AUDN 4
b Audit Message N4 < N3+L sym _ key

VM N 4
m Verifier Message N4 < N4+L Dishonest Bio

(No AUDb received)

VM N 4
m Verifier Message N4 < N3+L UNC event

VM N 4
v Verifier Message N4 (N3+L, N3+2L)∈ Dishonest Bio

VM N 4
m Verifier Message N4 < N3+L Dishonest Bio or Mech

(Flawed Input Message)

VM N 4
m Verifier Message N4 < N3+L Dishonest Bio or Mech

(No OUTm received)

VM N5
v Verifier Message N5 < N4+L COR or MAL event

B Details of Messaging Metadata

Appendix B provides details of the metadata that needs to be included attestation
transactions required for the game’s messaging mechanism.

B.1 Mechanical Message Metadata Content

A Biological b ∈ , begins by matching with a Mechanical, m ∈, then choos-
ing a Verifier, v ∈ , a process identifier, p ∈ , and an offer (Fee , P) , and finally,
creating and committing to the blockchain an Offer Message attestation transaction
with the following metadata:

Offer Metadata

Offer Message

23

ID_ data b

proc _ ID

ID _ datam /pub _ keym

ID_ datav /pub _ keyv

Fee

P

Fig. 3. Offer Message Metadata
where:

⚫ Offer Message: A plaintext message type label.
⚫ ID_ data b : The ID number chosen by the Biological when creating its Iden-

tity NFT. This is not strictly necessary since the transaction includes the Bio-
logical’s public key, which unambiguously identifies the message’s originator.

⚫ proc _ ID : p ∈ , the process the Biological wishes to have executed.
⚫ ID_ datam /pub _ keym : The ID number and/or public key of the Mechanical

the Biological has chosen. At least one is needed, but the public key makes
look-ups easier.

⚫ ID_ datav /pub _ keyv : The ID number and/or public key of the Verifier the
Biological has chosen.

⚫ Fee: The fee being offered to the Mechanical.
⚫ P: The probability of audit the Biological will pay for.

Suppose that the Biological commits an Offer Message that gets included in a
block at height N. Suppose for the moment that Mechanical sees this message and re-
sponds with an Accept Message (see the next Subsection). Then the Biological com-
mits an Input Message to the blockchain.

Input Metadata

Input Message

Hash (Offer _ TX)

ID _ datam /pub _ keym

ID_ datav /pub _ keyv

Encrypt (pub _ keym , sym _ key)

Encrypt (sym _ key , inputi)

Hash (Coin _ TXm)

Hash (Coin _ TXv)

24

Fig. 4. Input Message Metadata
where:

⚫ Input Message: As above.
⚫ Hash (Offer _ TX) : The hash of the Offer Message attestation transaction that

initiates the exchange. This is used as an identification number to make it easy
for a block explorer to collect all messages subsequently connected to a given
offer.

⚫ ID_ datam /pub _ keym : As above. Not strictly necessary since it can be
looked up using Hash (Offer _ TX) .

⚫ ID_ datav /pub _ keyv : As above, and used by the Verifier to find which mes-
sages it should pay attention to.

⚫ Encrypt (pub _ keym , sym _ key) : The Biological generates a random sym-
metric key, and encrypts it with the public key of the Mechanical.

⚫ Encrypt (sym _ key , inputi) : The Biological uses this symmetric key to en-
crypt the inputs it wants to have processed. We discuss the reasons for this ap-
proach and alternatives in the last Subsection below.

⚫ Hash (Coin _ TXm) : The Biological commits a separate coin transaction
sending Fee to the Mechanical and includes the hash of the transaction to al-
low verification of this fact.

⚫ Hash (Coin _ TXv) : The Biological does the same thing to send p×CV to the
chosen Verifier.

Suppose that the Biological commits an offer or Input Message that gets included
in a block at height N. Any Mechanical that maintains an Identity NFT in the ledger is
obliged monitor the blockchain for messages. It does not respond within some set
number of blocks, it is considered non-responsive, which is the same as noncoopera-
tive7. In this event, the Biological commits a No Response Message to the
blockchain.

No Response Metadata

No Response Message

Hash (Offer _ TX)

ID _ datam /pub _ keym

Fig. 5. No Response Message Metadata
where

⚫ No Response Message: As above.
⚫ Hash (Offer _ TX) : As above.
⚫ ID_ datam /pub _ keym : As above.

This message should be seen by the Verifier who will commit a Verification Mes-

7 There is, in fact, a mechanism that allows agents to declare that they are off-line, and then
come back on-line at later block height without removing their Identity NFT, and with it, the
history they have established. We omit these details for now.

25

sage, outlined below.
Finally, suppose that all goes well, the Mechanical commits an Output Message,

and the public randomization device8 indicates that an audit is called for. Then the Bi-
ological commits an Audit Message to the blockchain.

Audit Metadata

Audit Message

Hash (Offer _ TX)

Encrypt (pub _ keyv , sym _ key)

Fig. 6. Audit Message Metadata
where

⚫ Audit Message: As above.
⚫ Hash (Offer _ TX) : As above.
⚫ Encrypt (pub _ keyv , sym _ key) : The same symmetric key that the Biologi-

cal chose for the Input Message is encrypted with the Verifier's public key.
This allows the Verifier to go to the blockchain, find the input and Output
Messages associated with Hash (Offer _ TX) , decrypt the ciphertext inputs
and outputs that are signed and attested to by the Biological and Mechanical,
respectively, and run procp independently.

B.2 Mechanical Message Metadata Content

Each Mechanical, m ∈ , monitors the blockchain for messages. When it sees an
Offer Message containing ID_ datam /pub _ keym it considers the offer (Fee , P) and
the Process ID it contains. If the Mechanical finds the offer acceptable, then it com-
mits an Accept Message to the blockchain.

Accept Metadata

Accept Message

Hash (Offer _ TX)

ID _ datam /pub _ keym

Fig. 7. Accept Message Metadata
where

⚫ Accept Message: As above.
⚫ Hash (Offer TX) : As above.

8 For example, the hash of the concatenation of the Offer Message transaction hash, and the
Merkle root of the block committed after the one containing the Output Message could be
used as a seed.

26

⚫ ID_ datam /pub _ keym : As above, and not strictly needed since the public
key signing the transaction will also serve.

If the offer is not acceptable then the Mechanical commits a Decline Message to
the blockchain.

Decline Metadata

Decline Message

Hash (Offer _ TX)

ID _ datam /pub _ keym

Fig. 8. Decline Message Metadata
where:

⚫ Decline Message: As above.
⚫ Hash (Offer TX) : As above.
⚫ ID_ datam /pub _ keym : As above.

Suppose that the Mechanical accepts, and the Biological, in fact, commits a correct
Input Message. Then the Mechanical decides on CORRECT or MALICIOUS execu-
tion, generates an output, and, commits an Output Message to the blockchain.

Output Metadata

Output Message

Hash (Offer _ TX)

ID _ datam /pub _ keym

Encrypt (sym _ key , outputo)

Fig. 9. Output Message Metadata
where:

⚫ Output Message: As above.
⚫ Hash (Offer _ TX) : As above.
⚫ ID_ datam /pub _ keym : As above.
⚫ Encrypt (sym _ key , outputo) : The Mechanical uses the same symmetric key

as the Biological in its Input Message to encrypt the output it generates.
The Biological is required to undertake several actions correctly. If he does not,

honest Mechanicals are not able to complete their side of the transaction, and should
escape sanction. It may be that Biologicals should be sanctioned or labeled as non-co-
operative in this event, but we leave this for the future. There are now two possibili-
ties.

First, if Mechanical commits an Accept Message, but the Biological does not com-
mit an Input Message before a certain number of blocks have passed, then the Me-
chanical commits a No Response Message,

27

No Response Metadata

No Response Message

Hash (Offer TX)

ID_ data b /pub _ keyb

Fig. 10. No Response Message Metadata
where

⚫ No Response Message: As above.
⚫ Hash (Offer TX) : As above.
⚫ ID_ data b/pub _ keyb : As above.

Second, if the Biological commits an Input Message that is flawed in one or more
of the following ways:

⚫ Hash (Coin _ TXm) and/or Hash (Coin _ TXv) is not actually be committed to
the blockchain.

⚫ Hash (Coin _ TXm) and/or Hash (Coin _ TXv) do not transfer the right fee, or
are not to, or from, the right coin accounts.

⚫ ID_ datam /pub _ keym , ID _ datam /pub _ keym , and/or
Encrypt (pub _ keym , sym _ key) , are inconsistent with the original offer

transaction, Hash (Offer _ TX) , which is hash referenced in the message.
If so, then the Mechanical commits a Flawed Input Message,

Flawed Input Metadata

Flawed Input Message

Hash (Offer TX)

ID_ data b /pub _ keyb

Fig. 11. Flawed Input Message Metadata
where

⚫ Flawed Input Message: As above.
⚫ Hash (Offer TX) : As above.
⚫ ID_ data b/pub _ keyb : As above.

In both cases, the message should be seen by the Verifier who will commit a Veri-
fication Message, outlined below.

B.3 Verifier Message Metadata Content

Each Verifier, v ∈ , monitors the blockchain for certain messages, which it ana-
lyzes, and if required, chooses a verification code and then commits a Verification
Message to the blockchain. Specifically:

28

⚫ No Response Message from the Biological claiming that the Mechanical has
neither accepted not declined: If true, then verification code = Dishonest Me-
chanical. If false, then verification code = Dishonest Biological.

⚫ No Response Message from the Mechanical claiming that the Biological has
not committed an Input Message despite the Mechanical having committed an
Accept Message: If true, then verification code = Dishonest Biological. If
false, then verification code = Dishonest Mechanical.

⚫ Flawed Input Message from the Mechanical claiming that the Input Message
committed by the Biological does not follow the game’s messaging rules. If
true, then verification code = Dishonest Biological. If false, then verification
code = Dishonest Mechanical.

⚫ No Response Message from the Biological claiming that the Mechanical has
not committed an Output Message despite the Biological having committed an
Input Message: If true, then verification code = Dishonest Mechanical: If false,
then verification code = Dishonest Biological.

⚫ An Output Message. If no audit is called for by the public randomization de-
vice, then verification code = Uncertain.

⚫ An Audit Message from the Biological when one is required. In this case, the
Verifier conducts an audit and decides on a verification code = Correct or Ma-
licious.

⚫ Finally, if an audit is called for, but the Biological fails to commit an Audit
Message, the Verifier commits a Verification Message with verification code =
Dishonest Biological.

In all cases, the Verifier can consult the block explorer to find any data needed to
confirm or reject any of these claims or outcomes. When it decides on a verification
code, the Verifier commits a Verification Message to the blockchain.

Verification Metadata

Verification Message

Hash (Offer _ TX)

Verification Code

ID_ data b /pub _ keyb

ID _ datam /pub _ keym

Fig. 12. Verification Message Metadata
where

⚫ Verification Message: As above.
⚫ Hash (Offer TX) : As above.
⚫ Verification Code: As just described.
⚫ ID_ data b/pub _ keyb : As above, and not strictly needed, but makes the mes-

saging more transparent.
⚫ ID_ datam /pub _ keym : As above, and not strictly needed, but makes the

29

messaging more transparent.
Note that if the Biological sends a fake symmetric key in its Audit Message (or an

incorrectly encrypted one) to the Mechanical, or if it encrypts an incorrect or unpro-
cessable input, the Mechanical will return whatever garbage output results. The Bio-
logical will then be the party that the Verifier identifies as responsible in the event of
an audit.

Also note that the Biological cannot send a symmetric key that is different from the
one he used in this Input Message to the Mechanical. The Verifier generates a plain-
text of the symmetric key from the encrypted one sent in the Audit Message. It then
only needs to encrypt this with the Mechanical’s public key to determine whether the
Biological sent the same one as in its Input Message. Thus, the Verifier will have the
same symmetric key used by the Biological and Mechanical in their exchange of mes-
sages. The Verifier will therefore end up with the same plaintext inputs and outputs
and the two parties, and will be able to verify whether the Mechanical behaved hon-
estly.

B.4 A Less Data Intensive Approach

Above, we described a robust, but informationally costly, approach to input, out-
put, and Audit Messages. Specifically, the input and Output Messages contain the full
ciphertext of the literal inputs and outputs. This makes it impossible for either the Bi-
ological or the Mechanical to deny what was sent or received, and allows the Verifier
to determine the type of execution the Mechanical chose using only the relevant sym-
metric key.

If we are willing to allow more rounds of communication, then we can reduce the
data burden of attestation transactions to the blockchain as follows:

⚫ The Biological replaces Encrypt (pub _ keym , sym _ key) and
Encrypt (sym _ key , inputi) in the Input Message with Hash (input i) .

⚫ If the Mechanical accepts, the Biological sends the Mechanical the full text of
the input out-of-band.

⚫ The Mechanical must then either commit an Acknowledgment Message that
includes the hash of input to confirm what he received, or a No Response Mes-
sage claiming the either it never got the input, or that it was different from the
hash in the Input Message.

⚫ In the event of a No Response Message from the Mechanical, the Biological
must commit a new Input Message with the full ciphertext of the input.

⚫ Things proceed as before until the Mechanical is ready to send its output. The
pattern above is followed.

⚫ The Mechanical replaces Encrypt (sym _ key , outputo) with Hash (outputo)

in its Output Message and then sends the Biological the full text of the output
out-of-band.

⚫ The Biological must then either commit an Acknowledgment Message that in-
cludes the hash of its output to confirm what he received, or a No Response

30

Message claiming the either he never got the output, or that it was different
from the hash in the Output Message.

⚫ In the event of a No Response Message from the Biological, the Mechanical
must commit a new Output Message with the full ciphertext of the output.

⚫ If an audit is called for at this point, the Biological has both the input and out-
put that were either hashed, or encrypted, and then committed to a block. If
only the hashes are in the messages, the Biological is required to send the
plaintext of both to the verifier out-of-band.

⚫ If they are not committed, the Verifier commits a no response claim, and the
Biological must commit the full the ciphertexts to a block or be judged dishon-
est. Since the signed hashes are in the chain, the Biological cannot send false
inputs or outputs.

If data is in the blockchain, it is both provabley sent, and provabley received, at
least within game messaging rules. Consequently, one would hope that in almost all
cases, the existence of a mechanism that makes it impossible for agents to deny that
they sent or received the full inputs or outputs would make its use rare. Sending full
encrypted inputs and outputs through the blockchain is more costly to both parties,
and does not produce a strategic advantage for either. Thus, signed hashes will most
likely suffice.

References

1. Acemoglu, Daron, and Pascual Restrepo (2018) Artificial intelligence, automation, and
work. In The economics of artificial intelligence: An agenda (pp. 197-236). University of
Chicago Press.

2. AlAshery, Mohamed Kareem, Zhehan Yi, Di Shi, Xiao Lu, Chunlei Xu, Zhiwei Wang,
and Wei Qiao. (2020). A blockchain-enabled multi-settlement quasi-ideal peer-to-peer
trading framework. IEEE Transactions on Smart Grid 12, no. 1: 885-896.

3. Ball, Ian, and Deniz Kattwinkel (2019). Probabilistic Verification in Mechanism Design.
389-390. 10.1145/3328526.3329657.

4. Bebeshko, B., V. Malyukov, M. Lakhno, Pavlo Skladannyi, Volodymyr Sokolov, Svitlana
Shevchenko, and M. Zhumadilova. (2022). Application of game theory, fuzzy logic and
neural networks for assessing risks and forecasting rates of digital currency. Journal of
Theoretical and Applied Information Technology 100, no. 4: 7390-7404.

5. Bichler, Martin, Maximilian Fichtl, Stefan Heidekrüger, Nils Kohring, and Paul Sutterer.
(2021). Learning equilibria in symmetric auction games using artificial neural networks.
Nature machine intelligence 3, no. 8: 687-695.

6. Calvano, Emilio, Giacomo Calzolari, Vincenzo Denicolo, and Sergio Pastorello. (2020).
Artificial intelligence, algorithmic pricing, and collusion. American Economic Review
110, no. 10 : 3267-3297

7. Chaliasos, Stefanos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila Galanopoulou,
Arthur Gervais, Dimitris Mitropoulos, and Ben Livshits. (2020). Smart contract and defi
security: Insights from tool evaluations and practitioner surveys. arXiv preprint
arXiv:2304.02981 (2023).

8. Conley, John. (2024). AI Needs Blockchain: Trustless Solutions to Failures in Machine to
Colloidal Markets.. Manuscript.

31

9. Gabriel, Iason. Artificial intelligence, values, and alignment. Minds and machines 30, no.
3: 411-437.

10. Glikson, Ella, and Anita Williams Woolley. (2020). Human trust in artificial intelligence:
Review of empirical research. Academy of Management Annals 14, no. 2: 627-660.

11. Hardjono, Thomas, and Ned Smith.(2021). Towards an attestation architecture for
blockchain networks. World Wide Web 24, no. 5: 1587-1615.

12. Hua, Weiqi, Jing Jiang, Hongjian Sun, and Jianzhong Wu. (2020). A blockchain based
peer-to-peer trading framework integrating energy and carbon markets. Applied Energy
279 : 115539.

13. Lockey, Steven, Nicole Gillespie, Daniel Holm, and Ida Asadi Someh. (2021). A review of
trust in artificial intelligence: Challenges, vulnerabilities and future directions.

14. Oksanen, Atte, Nina Savela, Rita Latikka, and Aki Koivula. (2020). Trust toward robots
and artificial intelligence: An experimental approach to human–technology interactions
online. Frontiers in Psychology 11: 568256.

15. Schär, Fabian. (2021). Decentralized finance: On blockchain-and smart contract-based fi-
nancial markets. FRB of St. Louis Review.

16. Tan, Burcu, Edward G. Anderson Jr, and Geoffrey G. Parker. (2020). Platform pricing and
investment to drive third-party value creation in two-sided networks. Information Systems
Research 31, no. 1: 217-239.

17. Trammell, Philip, and Anton Korinek. (2023). Economic growth under transformative AI.
No. w31815. National Bureau of Economic Research.

18. Wang, Qin, Rujia Li, Qi Wang, and Shiping Chen. (2021). Non-fungible token (NFT):
Overview, evaluation, opportunities and challenges. arXiv preprint arXiv:2105.07447

19. Zarifhonarvar, Ali. (2023) Economics of chatgpt: A labor market view on the occupational
impact of artificial intelligence. Available at SSRN 4350925

20. Zeng, Rongfei, Chao Zeng, Xingwei Wang, Bo Li, and Xiaowen Chu. (2021). A compre-
hensive survey of incentive mechanism for federated learning. arXiv preprint
arXiv:2106.15406

21. Zhang, Lejun, Jinlong Wang, Weizheng Wang, Zilong Jin, Yansen Su, and Huiling Chen.
(2022). Smart contract vulnerability detection combined with multi-objective detection.
Computer Networks 217: 109289.

22. Zhou, Yiyi. (2017). Bayesian estimation of a dynamic model of two-sided markets: Appli-
cation to the U.S. video game industry. Management Science 63, 3874–3894.

	1 Introduction
	2 The Model
	3 The Two-Player One-Shot Game
	4 Generalized Games
	4.1 The Two-Player Repeated Game
	4.2 The Anonymous Multiplayer Repeated Game
	4.3 The Nonanonymous Multiplayer Repeated Game

	5 History and Identity
	5.1 Artificial Identity
	5.2 Provable History
	5.3 Attestations and NFTs
	5.4 An Architecture for Identity
	5.5 An Architecture for History
	5.6 Game Messaging Rules

	6 Conclusion
	Acknowledgments: I would like to thank Scott Page for discussions which partially inspired this work, and to participates in the 2024 NSF/CEME Decentralization Conference. My thanks are also due to three anonymous referees for suggested improvement to the manuscript.
	Disclosure of Interests. It: The author serves as the Chief Economist for the Geeq Project, a layer one blockchain protocol currently under development, and which also provided inspiration for this work. See footnote 6 and Section 5 for more details. This work, however, is not commissioned by Geeq or any other entity, and reflects only the options of the author, who takes full responsibility.
	A.1 Cryptographic Primitives
	A.2 Identity NFTs
	A.3 Messaging using Attestation Transactions
	A.4 Example of Message Metadata Content
	A.5 Summary of Message Flow
	B.1 Mechanical Message Metadata Content
	B.2 Mechanical Message Metadata Content
	B.3 Verifier Message Metadata Content
	B.4 A Less Data Intensive Approach

	References

