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Abstract

We study a bilateral trade model in which a product is recommended to a buyer

by an algorithm, based on the product’s value to the buyer and its price. We fully

characterize an algorithm that maximizes the buyer’s ex ante payoff and show that

it strategically biases consumption to incentivize lower prices. Under the optimal

algorithmic consumption, informing the seller about the buyer’s value does not

change the buyer’s ex ante payoff but leads to a more equitable distribution of

interim payoffs.
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1 Introduction

Algorithmic decision-making is rapidly spreading in the modern economy, fueled by

advancements in information technology and artificial intelligence. Algorithms make

recommendations for bail (Angwin et al., 2016), health (Obermeyer et al., 2019), and

lending (Jagtiani and Lemieux, 2019). Algorithms negotiate with suppliers (Van Hoek

and Lacity (2023)) and bid in online advertising auctions (Balseiro et al. (2021)). Fur-

thermore, consistent with the predictions of Gal and Elkin-Koren (2016), algorithmic

consumption is proliferating, as evidenced by chatbots that construct travel itineraries,

robo-advisors that propose financial securities, smart devices that control electricity use,

and price-trackers that seek and pinpoint lower-priced products.

In this paper, we ask how algorithmic consumption may empower consumers. To

answer this question, we characterize an algorithm that maximizes consumer surplus in

a canonical bilateral trade setting and study how such an algorithm interacts with price

discrimination. Our model captures three features of algorithmic consumption. First,

an algorithm processes consumer and product data, facilitating the learning about trade

value. Second, an algorithm can base recommendations on price.1 Third, the prod-

uct price is strategically chosen by a seller, who optimally responds to the algorithmic

demand.

Specifically, we study the following model. A buyer and a seller can trade a single

product, with both the trade cost and trade value being uncertain. The seller privately

knows the cost, which constitutes her type. Initially, the buyer knows neither the value

nor the existence of the product. However, an algorithm can discover the value and

recommend the product based on the value and price posted by the seller. If recom-

mended, the buyer forms a Bayesian value estimate and decides whether to purchase

the product at the posted price; otherwise, trade does not occur. Different algorithms

are distinguished by their recommendation functions and the resulting demand curves.

1The dependence of information on price can be programmed in directly, as seen in Amazon’s search
ranking algorithms (Lee and Musolff (2021), Farronato et al. (2023)) or it can arise indirectly through
consumer feedback technology (Luca and Reshef (2021), Chakraborty et al. (2022)), wherein higher
prices, all else being equal, lead to lower consumer satisfaction and ratings.
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For any demand curve, the seller sets a price to maximize her profit.

We characterize a buyer-optimal algorithm, i.e., an algorithm that maximizes the

buyer’s expected payoff. Such an algorithm must balance a tradeoff. On the one hand,

to incentivize the seller to lower the price, the algorithm should reward low prices by

recommending the product more often, and it should punish high prices by recommend-

ing the product less often. On the other hand, the algorithm should strive to maximize

the benefits of a trade at any give price and not forego beneficial trade opportunities.

We show that this trade-off is optimally resolved by an algorithm with a threshold

structure, which recommends the product when its value reaches a threshold that varies

with the price. Thus, we can recast the algorithm design as the design of a threshold

function, which we approach and solve as a nonlinear screening problem.

We fully characterize the buyer-optimal algorithm and establish its two key features

(Proposition 1). First, consistent with the strategic aspect of design, the algorithm

is biased relative to the ex post optimal algorithm: at high prices, the buyer-optimal

algorithm does not recommend the product even when the values exceeds the price;

at low prices, the algorithm recommends the product even when the value is below

the price. These ex post mistakes render the buyer’s demand more price elastic and

incentivize the seller to lower prices across different costs. This finding highlights the

importance of strategic context for an algorithm assessment and thus contributes to the

ongoing debate on AI regulation (e.g., European Commission (2021); Biden (2023)).

Second, the buyer-optimal algorithm attains the same outcome as if the buyer had

full commitment power and designed a mechanism with arbitrary monetary transfers.

That is, even though the algorithm serves only information, it effectively shifts market

power to the buyer. This observation offers a novel perspective on the role of the buyer’s

information in bilateral trade: When the information policy can be contingent on prices,

it can serve as an indirect optimal mechanism for the monopsony’s mechanism design

problem, thus delivering notably stronger benefits to the buyer than price-independent

learning (cf. Roesler and Szentes (2017), and see further Section 3.1).

Finally, we show that such an algorithmic transfer of market power changes the
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welfare implications of third-degree price discrimination. Specifically, we assume that

the seller can observe an informative signal about the buyer’s valuation, representing

a consumer segment. The seller then sets a price against an algorithm, buyer-optimal

in that segment. We show that the buyer’s ex ante expected payoff does not depend

on the signal structure, i.e., on the granularity of market segmentation (Proposition 2).

Moreover, within a natural class of signals, a more informative signal, i.e., a finer market

segmentation, results in a mean-preserving contraction of surplus among buyers with

different values. Intuitively, informing the seller about the buyer’s value incentivizes

the seller to set lower prices for low-value consumers and higher prices for high-value

consumers, resulting in more dispersed prices and less dispersed consumer surplus.

We conclude that algorithmic consumption may not only protect consumers against

price discrimination but could also exploit such discrimination to realize the societal

benefits of fairness and equality. This finding suggests that promoting algorithmic con-

sumption may be a powerful consumer protection policy, complementary to the existing

regulatory methods detailed, for example, by Scott Morton et al. (2019).

Related literature.— Our paper contributes to a recent and rapidly growing literature

on the economics of algorithmic decisions. The large focus of this literature has been on

algorithmic pricing in competitive settings, either empirical (Calvano et al. (2020), Assad

et al. (forth.)), theoretical (Salcedo (2015), Lamba and Zhuk (2023)), or both (Brown

and MacKay (2023), Johnson et al. (2023)). This literature largely investigates whether

and how algorithms can empower sellers by enlarging their collusion opportunities. We

complement this literature by examining the other side of the market and asking whether

and how algorithms can empower buyers.

Specifically, we show that algorithmic consumption can deliver a countervailing power

in the spirit of Galbraith (1952) to buyers by giving them a stronger bargaining position

vis-a-vis sellers.2 In fact, out setting can be viewed as enabling a buyer from the classic

setting of Myerson and Satterthwaite (1983) to commit to values and prices at which she

2Thus, algorithmic consumption can be viewed as an effective alternative to the joint use of an
intermediary (see Decarolis and Rovigatti (2021) for an online advertising) or to a merger (see Loertscher
and Marx (2022) for a multi-firm bargaining).

3



would be purchasing a product. In this sense, we proceed in the opposite direction from

the literature on limited commitment, which investigates how the inability to commit,

typically on the part of a seller or a mechanism designer, affects equilibrium trade

outcomes (e.g., Mylovanov and Tröger (2014), Liu et al. (2019)).

Methodologically, our paper belongs to the recent strand of economic literature that

examines methods of empowering buyers in monopolistic settings via information con-

trol. Roesler and Szentes (2017) analyze buyer-optimal learning in a bilateral trade

setting. Similarly to us, they demonstrate that the buyer benefits from ex post imper-

fect decisions to influence the seller’s pricing; that is, full learning about the value is

not optimal. Deb and Roesler (2021) extend this analysis to the case of a multiproduct

monopoly and Bergemann et al. (2023) to auctions; Condorelli and Szentes (2020) ana-

lyze the buyer-optimal distribution of values within a given interval. We contribute to

this literature by introducing seller heterogeneity3 and by allowing the buyer’s informa-

tion, and thus posterior value distribution, depend on price, which are natural features

of the online economy.4

Finally, our analysis provides a novel perspective on the classic question of monop-

olistic price discrimination based on consumer information studied in the literature on

market segmentation (e.g., Bergemann et al. (2015), Yang (2022), Haghpanah and Siegel

(2023), Ichihashi and Smolin (2023)). We show that the use of algorithms by consumers

may introduce a new welfare implication whereby price discrimination attains a more

equal distribution of consumer surplus without affecting average welfare outcomes. This

finding also contributes to the recent literature that explores ways to promote equal-

ity and fairness through mechanism design (Kleinberg et al. (2018), Dworczak et al.

(2021), Akbarpour et al. (forth.)) or information design (Doval and Smolin (forth.)),

by putting forward algorithmic consumption as a means to mitigate the effects of price

3Thus, we combine the machinery of Bayesian persuasion (e.g., Kamenica and Gentzkow (2011))
with that of mechanism design (e.g., Baron and Myerson (1982)). Several other papers have combined
these machineries in trade settings, typically to study revenue maximization, most recently including
Lee (2021), Bergemann et al. (2022), Yang (2022), and Smolin (forth.).

4The dependence of information on price may also arise from a worst-case analysis, as in the work
of Libgober and Mu (2021), in which the buyer’s information is chosen to minimize the seller’s profits.
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discrimination on consumers and achieve a more equitable welfare outcome.

2 Baseline Model

There is a buyer and a seller. The seller can produce one unit of a product at cost c,

which is her private type. The type distribution F has support [0, 1], positive density f ,

and continuous and increasing F/f . The value of the product to the buyer is v ∼ G and

independent of the seller’s type. The value distribution G has positive density g over its

support [0, 1].

The buyer initially knows neither the existence nor the value of the product. How-

ever, a recommendation algorithm or simply algorithm provides the buyer with this

information. Specifically, an algorithm is a function r : [0, 1] ×R+ → [0, 1] such that for

any pair (v, p) of a realized value v ∈ [0, 1] and a product price p ∈ R+, the algorithm

recommends the buyer to purchase the product with probability r(v, p). The algorithm

is commonly known to the buyer and seller.

Given an algorithm, the game unfolds as follows: First, nature draws the seller’s

type c and the buyer’s value v. Second, the seller privately observes her type c but

not value v, and posts a price, p. With probability 1 − r(v, p), the algorithm does not

recommend the product, in which case trade does not occur. With probability r(v, p),

the algorithm recommends the product to the buyer, who observes the recommendation

and the price, and then decides whether to buy the product. If trade occurs, the buyer

and seller obtain ex post payoffs v − p and p − c, respectively. Otherwise, both players

obtain zero payoffs.

The solution concept is perfect Bayesian equilibrium. If the product is recommended,

the buyer updates the expected value of the product to

E[v | recommended, p] =
∫ 1

0 xr(x, p)g(x)dx∫ 1
0 r(x, p)g(x)dx

,

and then purchases the product whenever this value exceeds the price. A pair of an

algorithm and a buyer’s strategy induces a demand curve, which maps each price to a
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probability of trade. In equilibrium, each seller type takes this demand curve as given

and chooses a price that maximizes her expected payoff.

We call the buyer’s ex ante expected payoff buyer surplus and the seller’s expected

payoff seller profit. An algorithm attains a given buyer surplus if this buyer surplus arises

in an equilibrium under this algorithm. Our focus is on the recommendation algorithms

that maximize buyer surplus:

Definition 1. A recommendation algorithm is buyer-optimal if it attains a greater buyer

surplus than any other recommendation algorithm.

It will be useful to distinguish between seller types who trade and those who do not

under a given algorithm and their posted prices. Given an algorithm and an equilibrium,

we say that a price is active if it results in a strictly positive trade probability and is

inactive otherwise. Similarly, we say that a type is active if she posts an active price

with strictly positive probability and is inactive otherwise.

3 Buyer-Optimal Algorithm

In this section, we characterize the buyer-optimal algorithm. Our first observation is

that it is without loss to assume that the buyer purchases the product whenever it

is recommended. This is because the algorithm can anticipate and mimic the buyer’s

response. Our second observation is that the seller is concerned solely with trade volume.

Thus, an optimal algorithm should maximize buyer surplus conditional on trade volume,

prioritizing buyers with higher values. This observation enables us to identify a tractable

class of algorithms.

Specifically, we say that an algorithm r is a threshold algorithm if there exists a

threshold function v̂ : R+ → [0, 1] such that r(v, p) = 1(v ≥ v̂(p)), i.e., the algo-

rithm recommends the product with probability 1 if the value exceeds a price-dependent

threshold, and with probability 0 otherwise. If v̂(p) = 1 at some price p, then the algo-
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rithm never recommends the product at price p.5 If v̂(p) = 0, then the algorithm always

recommends the product at price p.

Lemma 1. (Threshold Algorithms) For any algorithm r, there exists a threshold algo-

rithm under which the buyer follows the recommendations and that yields a greater buyer

surplus than r and the same seller profit as r.

Lemma 1 shows that threshold algorithms span a Pareto frontier in the space of

buyer surplus and seller profit. In particular, if there exists a buyer-optimal algorithm,

then it can be found in the class of threshold algorithms, and in what follows, we focus

on threshold algorithms.

The optimal choice of a threshold function must balance the trade-off between max-

imizing trade surplus and incentivizing the seller to lower the price. One option is to

set v̂(p) ≡ v0 so that regardless of the price, the product is recommended whenever the

value is sufficiently high. This algorithm ignores the impact of algorithm design on the

seller’s pricing. At another extreme, one can set v̂(p) = 1(p > p0) so that the product

is recommended whenever the price is below some cutoff p0. This algorithm overlooks

the importance of values for buyer surplus. Another natural option is to set v̂(p) = p

so that the product is recommended if and only if the value exceeds the price. This

ex post optimal algorithm maximizes the buyer’s payoff given fixed prices. However,

the algorithm fails to maximize buyer surplus, because it underuses the opportunity to

dampen equilibrium prices.

We can cast the designer’s problem as a screening problem in which the optimal

threshold responds to a price in a manner that depends on the value distribution and

the virtual cost function. Let Γ(c) ≜ c + F (c)/f(c) denote the virtual cost function.

Define c̄ as Γ(c) = 1.6 Define the following pricing strategy:

p̃(c) ≜ Ev∼G[Γ−1(v) | v ≥ Γ(c)], (1)

5Precisely, the algorithm recommends the product only if v = 1, an event that occurs with zero
probability.

6Type c exists and is unique because Γ(·) is strictly increasing and continuous on [0, 1] and Γ(0) =
0 < 1 ≤ Γ(1).
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where the conditional expectation is set to equal Γ−1(1) whenever the conditioning event

occurs with probability zero, i.e., when c ≥ c. Because Γ(c) is increasing and v has full

support over [0, 1], p̃(c) is a continuous function that equals p ≜ Ev∼G[Γ−1(v)] at c = 0,

strictly increases on (0, c), and equals p ≜ Γ−1(1) for c ≥ c. Define the inverse function

of p̃ as p̃−1 with the (nonstandard) convention that p̃−1(p) = c for p > p.

Proposition 1. (Buyer-Optimal Algorithm)

1. A buyer-optimal algorithm has a threshold function v̂(p) = Γ(p̃−1(p)), which strictly

and continuously increases on (p, p) with v̂(p) = 0 and v̂(p) > p.

2. In equilibrium, type c ∈ [0, c) posts a price p̃(c) and trades whenever v ≥ Γ(c). Types

c ≥ c are inactive.

Proof Outline. We can solve for an optimal algorithm by building on mechanism-design

machinery. Even though the algorithm does not administer monetary transfers, its rec-

ommendations can depend on price, and as such, it can calculate and control the seller’s

expected revenue. The choice of the equilibrium price and threshold then gives the al-

gorithm standard tools to screen different seller types, mirroring the seminal analysis of

Baron and Myerson (1982).

The choice of the threshold simultaneously determines the expected trade surplus,

valued by the buyer, and the expected trade volume, valued by the seller. The threshold

that optimally trades off efficiency and incentives, when viewed as a function of seller

type v̂(p(c)), equals virtual cost. This relationship pins down the equilibrium trade

volume, and the equilibrium price function (1) guarantees an incentive-compatible profit

distribution across types. In turn, this allows us to calculate the optimal threshold as a

function of an equilibrium price v̂(p). Finally, the optimal algorithm generates positive

buyer surplus at any price, so the buyer is always willing to purchase recommended

products.

Proposition 1 reveals three notable features. First, less efficient types c > c are

inactive and thus excluded from trade. This happens because the buyer value is bounded

from above; if it were unbounded, some values would always be above virtual costs, and
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all interior types would be active.

Second, the impact of the value and cost distributions can be decoupled. The optimal

trade allocation in the space of costs and values, v ≥ Γ(c), depends only on the cost

distribution via the virtual cost formula, whereas the optimal prices depend both on the

cost and value distribution. This feature facilitates the analysis of the impact of data

availability in Section 4.

Finally, the optimal algorithm makes two types of ex post errors: If the product

price is high and close to p, we have v̂(p) > p, so the algorithm does not recommend

the product even when the value is above the price; if the product price is low and

close to p, we have v̂(p) < p, so the algorithm recommends the product even when the

value is below the price. Thus compared to the ex post optimal algorithm, the buyer-

optimal algorithm distorts purchasing decisions by rewarding low prices and punishing

high prices, leading to an algorithmic demand that incentivizes the seller to set lower

prices.

The following result strengthens the last observation—that the optimal algorithm dif-

fers from the ex post optimal algorithm at low and high prices. Within a flexible class of

distributions, the buyer-optimal algorithm differs from the ex post optimal algorithm for

almost all active prices, inducing over-consumption at low prices and under-consumption

at high prices.

Corollary 1. Assume that F (c) = cα and G(v) = vβ for some α, β > 0. Then, under the

buyer-optimal algorithm, a price p∗ ∈ (p, p) exists such that v̂(p) < p for any p ∈ [p, p∗)

and v̂(p) > p for any p ∈ (p∗, p].

Example 1 (Uniform). We examine the buyer-optimal algorithm in a canonical case in

which c and v are uniformly distributed on [0, 1], which corresponds to setting α = β = 1

in Corollary 1. The virtual cost is Γ(c) = 2c. By Proposition 1, under the optimal

algorithm, the equilibrium pricing is p̃(c) = E [v/2|v ≥ 2c] = (1 + 2c)/4 for c ∈ [0, 1/2].

For types c > 1/2, p̃(c) = 1/2, so those types are inactive. The recommendation

threshold function v̂(p) equals 0 for p < 1/4, equals 4p−1 for p ∈ [1/4, 1/2] and equals 1

for p > 1/2. A buyer who receives a recommendation at price p infers that the expected
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Figure 1: Optimal recommendation algorithm (left) and the resulting equilibrium pricing

strategy and trade region (right). v ∼ U [0, 1], c ∼ U [0, 1].

value of the recommended product is (4p − 1 + 1)/2 = 2p > p and is thus willing to

purchase it.

The left side of Figure 1 depicts the optimal recommendation threshold (solid line)

along with the ex post optimal recommendation threshold v̂ = p (dashed line). As

we discussed above and formalized in Corollary 1, the ex ante optimal algorithm is

suboptimal ex post in two ways: if the product price is low, i.e., p < 1/3, it recommends

the product even when the value is below the price, leading to a negative ex post payoff

to the buyer. Second, if the product price is high, i.e., p > 1/3, the algorithm does not

recommend the product even when the value is above the price. The algorithm translates

into a piecewise linear demand curve, which each seller type considers as given when

deciding which price to post.

The right side of Figure 1 depicts the resulting equilibrium pricing and trade: the

price p̃(c) posted by the seller of type c, the region of values and types in which the

trade occurs (filled area), and the efficient trade region (area encircled by dashed lines).

In accordance with Proposition 1, under an optimal algorithm, trade happens whenever

the buyer’s value is greater than the seller’s virtual cost. Type c = 0 always trades.

All higher types post progressively higher prices and serve progressively fewer buyers.
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Types c > 1/2 never trade. Equilibrium active prices span the interval [1/4, 1/2]. ♢

3.1 Commitment and Information

The buyer-optimal algorithm combines commitment and information: By disclosing

information about a product in a predetermined way, the algorithm enables the buyer

to follow a certain demand schedule and obtain a higher surplus than in the standard

monopoly setting. In this section, we further investigate the optimal algorithm as a tool

to provide the buyer with commitment power and information.

First, the optimal algorithm in Proposition 1 attains the same outcome as when the

buyer has full commitment power. Indeed, our proof reveals that the algorithm is an

indirect implementation of an optimal mechanism in which the buyer can commit to a

mechanism that determines the allocation of the product and monetary transfer based

on the seller’s reported cost and the buyer’s true value. As a result, even though the

algorithm serves only information, it effectively transfers market power from the seller to

the buyer. Consequently, extending the framework by enabling the algorithm to charge

a referral or a commission fee to the seller cannot increase buyer surplus.

This observation also implies that the same algorithm remains optimal in the case

of a fully automated trade, e.g., if it could execute transactions without having the

buyer in the loop. Formally, suppose now that, instead of giving a recommendation,

the algorithm executes the transaction on behalf of the buyer with probability r(v, p).

In principle, the optimal algorithm in this setup may attain a higher buyer surplus

than in our model, because it does not need to respect the buyer’s incentive to follow

the recommendation. However, the optimal algorithm in this scenario is the same as

that described in Proposition 1, because that algorithm already achieves the buyer’s full

commitment outcome.

Finally, Proposition 1 remains relevant even in the value disclosure setup, which is

a model where the buyer is initially uninformed about v but knows the existence of

the product, so that the buyer can purchase the product even if the product is not

recommended. In general, compared to our model, in the value disclosure setup the
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optimal algorithm may differ and the buyer may obtain a lower payoff. For example,

suppose that c = 0 with probability 1. In our model, the buyer can extract the efficient

surplus by the algorithm that recommends the product only at p = 0. In contrast, in

the value disclosure setup, this algorithm would not be able to dissuade the buyer from

purchasing when the seller sets a low positive price, so the seller would necessarily earn

a positive profit. At the same time, in the uniform setting of Example 1 and in many

other cases, the optimal algorithm and the resulting outcome in the value disclosure

setup coincide with those in Proposition 1.

Claim 1. If
∫ Γ(c)

0 [v − c]dG(v) ≤ 0 for each c ∈ [0, c], then the buyer-optimal algorithm

in the value disclosure setup coincides with the algorithm in Proposition 1.

The condition of Claim 1 ensures that whenever the product is not recommended

in the value disclosure setup, the buyer infers that the expected value of the product is

below the price and thus chooses not to buy it. To see the intuition, suppose that the

seller posts a price of p̃(c), and the algorithm recommends the buyer to not purchase

the product, which by Proposition 1, reveals that v ≤ Γ(c). If the buyer purchases the

product, his payoff must necessarily decrease, because the seller’s profit increases but

total surplus decreases because of
∫ Γ(c)

0 [v − c]dG(v) ≤ 0. Thus, the buyer is willing to

follow the recommendation to not buy. Because the buyer is originally willing to follow

the recommendation to buy under the buyer-optimal algorithm, we conclude that the

buyer always follows the recommendation in the value disclosure setup.

In a certain sense, the condition
∫ Γ(c)

0 [v − c]dG(v) ≤ 0, ∀c ∈ [0, c] requires that the

cost distribution dominates the value distribution. This condition holds, for example,

when (i) F (c) = cα and G(v) = vβ with 0 < α ≤ β or (ii) G is uniform and F (c)/c

is increasing. Either condition implies that the cost distribution dominates the value

distribution in terms of first-order stochastic dominance.
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3.2 Seller-Optimal Algorithmic Consumption

Thus far, we have focused on the question of buyer-optimal algorithmic consumption.

Natural alternative questions are as follows: what is the seller-optimal algorithmic con-

sumption, and what is the efficient algorithmic consumption, i.e., what recommendation

algorithms maximize seller profit and total surplus, respectively? We show that the

answers to these questions coincide and feature a simple recommendation structure.

Claim 2 (Seller-Optimal Algorithm). A threshold algorithm with v̂(p) such that for

all p in [E[v], 1], E[v | v ≥ v̂(p)] = p simultaneously maximizes the seller’s profit and

total surplus, and moreover, achieves an efficient trade.

The algorithm presented in Claim 2 maximizes efficiency at the expense of the buyer.

Indeed, for any price, the algorithm maximally pools products of different values to the

extent that the buyer is still willing to purchase when recommended. This results in

a threshold recommendation, and given the full support assumption on G, a threshold

is uniquely defined for all p ∈ [E[v], 1]. Under this algorithm, the buyer is guaranteed

a zero expected payoff irrespective of the posted price. Hence, the seller of any cost

understands that she appropriates all generated surplus and thus her objective of profit

maximization is perfectly aligned with efficiency. As a result, because the algorithm

allows any threshold allocation, the seller of type c will post a price p(c) that leads to

an efficient trade, i.e., p(c) = E[v|v ≥ c]. The resulting overall allocation is efficient, the

seller obtains the maximal feasible surplus, and the buyer is left with no rent.

We note that the discussion of Section 3.1 applies with greater force to the seller-

optimal (and efficient) algorithm. As the algorithm achieves the first-best efficient bench-

mark, it cannot be improved upon by the use of monetary transfers, and as the algorithm

maximizes the seller’s profit, it remains optimal in the value disclosure setting for any

cost and value distributions.
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4 Algorithm Design and Market Segmentation

We now turn to the question of how the design and the outcome of the buyer-optimal

algorithm adapt to the setting in which the seller gains access to data about the buyer’s

value and can engage in third-degree price discrimination. This setting can be viewed

as market segmentation, in which the seller has the ability to target different consumer

segments with different prices (e.g., Bergemann et al. (2015), Elliott et al. (2022)).

To study this question, we assume that the seller observes a public signal about the

buyer’s value. Formally, a signal I = (S, π) consists of a set S of signal realizations

s and a family of distributions {π(·|v)}v∈[0,1] over S. The signal is independent of the

seller’s type, and the algorithm can make recommendations based on both the realized

signal and the value and price of the product.7 To provide a sharper characterization, a

part of our analysis considers a specific class of signals (see, e.g., Lewis and Sappington

(1994) and Johnson and Myatt (2006)):

Definition 2. The truth-or-noise signal with accuracy α is a signal such that with

probability α, s = v, and with probability 1 − α, s ∼ G independent of v.

Because the signal is public and exogenous, our characterization of the buyer-optimal

algorithm extends to this setting, as applied to each signal realization. Take any sig-

nal. Let Gs denote the posterior distribution of the buyer’s value conditional on signal

realization s. By Proposition 1, under the optimal algorithm, a seller of type c posts

price

p̃s(c) = Ev∼Gs [Γ−1(v)|v ≥ Γ(c)], (2)

and the algorithm recommends the product if and only if v ≥ Γ(p̃−1
s (p)), i.e., the value

exceeds the virtual cost of the seller’s type that posts price p.

For a given algorithm and the seller’s pricing strategy ps(c), define the individual

7The assumption that the signal is public captures the idea that the seller has no information beyond
that accessed by the algorithm. This assumption would be automatically satisfied if the seller’s signal
were a deterministic function of valuation, i.e., a partitional or fully informative signal.
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buyer surplus at value v, w(v), as the expected payoff of the buyer conditional on his

value being v:

w(v) ≜ Es,c[(v − ps(c))r(v, ps(c)) | v], (3)

where the expectation is taken with respect to (s, c). Analogously, define the individual

seller profit at cost c, π(c), as follows:

π(c) = Es,v[(ps(c) − c)r(v, ps(c)) | c], (4)

where the expectation is taken with respect to (s, v). The following result examines how

the seller’s access to data affects the distributions of individual surpluses and profits,

i.e., the distribution of w(v) with v ∼ G and that of π(c) with c ∼ F .

Proposition 2 (Market Segmentation). Under the buyer-optimal algorithm, the ex

ante buyer surplus and the individual seller profit at each c are the same for any signal

I. If I is a truth-or-noise signal, then as accuracy α increases, the distribution of prices

undertakes a mean-preserving spread, and the distribution of individual buyer surpluses

undergoes a mean-preserving contraction.

Proof Outline. Recall that in our baseline model, by Proposition 1, the equilibrium

allocation of the product does not depend on the value distribution: Regardless, the

optimal algorithm executes trade if and only if v ≥ Γ(c). The same argument applies

to each posterior induced by a signal. This means that regardless of the signal, the

algorithm attains the same total surplus, and if viewed as a mechanism, it results in the

same mapping from each type to the trade volume. The revenue equivalence theorem

then implies that the individual profit of each type does not change either.8 As a result,

buyer surplus also does not depend on the signal.

At the same time, the seller’s access to data redistributes the individual surplus.

For example, when the seller has no information, the seller with cost c posts a price

8Note that the seller with the highest cost c = 1 never trades.
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of Ev∼G[Γ−1(v)|v ≥ Γ(c)] independent of v, and any buyer with value v ≥ Γ(c) trades

at that price. Suppose now that the seller has full information about v. Under the

buyer-optimal algorithm, type c posts a price of Γ−1(v) for the buyer with value v, and

the buyer trades at this new price, which is now increasing in the value. As a result,

aggregating over sellers with different costs, the seller’s data decrease the individual

surplus of buyers with high values and increases the individual surplus of buyers with

low values, leading to a more equalized surplus distribution. An argument for noisy

data has a similar intuition and builds on the analysis of stochastic orders, utilizing the

structure of truth-or-noise signals.

Proposition 2 establishes, in a stark manner, that on average, the seller does not

benefit from having more information about the buyer’s value, and the buyer is not

harmed by the release of such information, as long as this release is countered by the

algorithm design. Moreover, such an information release may be considered beneficial if

the designer prefers a more equal distribution of surplus across buyers.

Example 1 (continued). Assume again that v and c are uniformly distributed on

[0, 1]. Suppose that the seller has access to a public truth-or-noise signal with accuracy

α. Given a realized signal s, the posterior value distribution Gα,s places a mass of α on

v = s and a mass of 1 − α on v ∼ U [0, 1]. As a result, the price posted by active type

c < 1/2, as presented in Equation 2, is

pα,s(c) = Ev∼Gα,s

[
v

2
∣∣∣v ≥ 2c

]
=


1+2c

4 , if s ≤ 2c,

α s
2 + (1 − α)1+2c

4 , if s ≥ 2c.

Figure 2 depicts the equilibrium price of an active type c as a function of a realized

signal s at two levels of accuracy. For a signal realization below 2c, the seller does not

base its price decision on the event that the signal is truth, because any value below

2c does not lead to trade. Thus, the seller charges a price based on the prior value

distribution, leading to price 1+2c
4 . In contrast, the seller’s price increases in a signal

realization above 2c. As the accuracy increases, the price responds more strongly to the
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Figure 2: Equilibrium price posted by type c at different signal realizations and individ-

ual surplus at different values, shown at two levels of accuracy. v ∼ U [0, 1], c ∼ U [0, 1].

realized signal, making the equilibrium price steeper as a function of the realized signal.

To see the implication of this price change for the buyer’s individual surplus, let

wα(v, c) denote the buyer’s equilibrium payoff conditional on having value v and facing

seller type c. A buyer with v < 2c does not trade and thus obtains a payoff of wα(v, c) =

0. A buyer with v ≥ 2c trades. Specifically, with probability α, the buyer faces signal

realization s = v ≥ 2c and pays a price of α v
2 + (1 − α)1+2c

4 . With the remaining

probability, the signal is drawn from U [0, 1], leading to price 1+2c
4 if s ≤ 2c or α s

2 + (1 −

α)1+2c
4 if s ≥ 2c. The resulting buyer’s payoff is

wα(v, c) = v

(
1 − α2

2

)
− 1 + 2c

4 (1 − α2).

Figure 2 depicts wα(v, c) as a function of value v. As the accuracy of the signal increases,

the equilibrium price is more strongly related to the buyer’s value, which, in turn, makes

the buyer’s payoff less responsive to their willingness to pay. As a result, the seller’s

access to the signal makes the distribution of surplus wα(v, c) more equalized across

different values. The same property persists when we aggregate surpluses across differ-

ent seller types, leading to the mean-preserving contraction property of the individual

surpluses stated in Proposition 2. ♢
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Proposition 2 requires the algorithm to adopt a different recommendation rule for

each realized signal. Specifically, while the resulting allocation of the good remains the

same for any signal realization, the recommendation threshold function and the seller’s

equilibrium pricing depend on the posterior value distribution induced by each signal

realization. Interpreted in the context of market segmentation, it means that the buyer-

optimal recommendations should be personalized at the level of a market segment, so

that the algorithm may optimally send different recommendations to buyers in different

segments, even if the product price and the estimated trade values are the same.

5 Conclusion

We studied algorithmic decision-making by consumers in a bilateral trade setting. We

showed that a buyer-optimal algorithm must strike a balance between increasing trade

surplus by informing the buyer about the product and inducing low prices by withholding

recommendations for products with high prices. The optimal algorithm can protect total

consumer surplus from personalized pricing and even use it to reduce surplus distribution

inequalities.

We view our work as a stepping stone toward a better understanding of optimal al-

gorithmic design in strategic settings with incomplete information. Within the context

of algorithmic consumption, we lay the groundwork for several future research possi-

bilities. For example, we deliberately restricted the buyer’s source of information such

that the buyer does not learn anything beyond what is provided by the recommendation

algorithm. In practice, however, buyers may be able to assess or search for the product

on their own, which could be incorporated into optimal algorithm design. As another

example, we confined our analysis to bilateral trade involving a single product. One

could explore the implications of algorithmic consumption in broader settings, such as

those involving a multiproduct monopolist or competing sellers. The latter extension

could complement the studies on strategic steering by online platforms, e.g., those by

Hagiu and Jullien (2011), Hagiu et al. (2022), and Bar-Isaac and Shelegia (2022).
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Appendix

A Omitted Formalism

Proof of Lemma 1 Take any algorithm r. For each p ≥ 0, let qr(p) ≜
∫ 1

0 r(v, p)dG(v)

denote the probability with which the product is recommended, and thus purchased,

under r. Define a new algorithm r̂ as r̂(v, p) ≜ 1(v > G−1(1 − qr(p))). At each
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price p, this algorithm recommends the product with the same probability as r, 1 −

G(G−1(1 − qr(p))) = qr(p). Moreover, the expected value of the product, conditional on

recommendation, is greater under r̂ than under r. As a result, the buyer will purchase

the product whenever it is recommended by r̂, and at each price p, the seller will earn

the same profit under both r and r̂. Therefore, r̂ has an equilibrium that attains a

greater buyer surplus than r with the same seller profit as r.

Proof of Proposition 1 By the revelation principle, we can study algorithm design

by analyzing direct mechanisms in which the seller reports the type to the designer,

and the designer chooses which valuations to allocate to the seller and at which price.

Furthermore, by Lemma 1, we can focus on threshold allocations. The designer’s problem

can thus be stated as follows:

max
v̂:[0,1]→[0,1], p:[0,1]→R+

∫ 1

0

∫ 1

v̂(c)
(v − p(c)) dG dF, (5)

s.t.
∫ 1

v̂(c)
(p(c) − c)dG ≥

∫ 1

v̂(c′)
(p(c′) − c)dG ∀ c, c′ ∈ [0, 1],∫ 1

v̂(c)
(p(c) − c)dG ≥ 0 ∀ c ∈ [0, 1].

The easiest way to solve this problem is to reformulate it in familiar terms. Because

the value is continuously distributed, the expected trade probability q ≜
∫ 1

v̂ dG is strictly

decreasing in v̂, spanning [0, 1] as v̂ spans [0, 1]. Hence, q and v are in a one-to-one

relationship, and instead of maximizing over v̂(c), we can maximize over q(c). With a

small abuse of notation, denote by v̂(q) the threshold that results in a given q and by

V (q) ≜
∫ 1

v̂(q) vdG the corresponding trade surplus. The trade surplus is strictly increasing

in q with V (0) = 0 and V (1) = E[v]. Moreover,

dV

dq
= ∂V/∂v̂

∂q/∂v̂
= −v̂g(v̂)

−g(v̂) = v̂(q), (6)

and as such, V (q) is a concave function with V ′(0) = 1 and V ′(1) = 0. Finally, denote

the expected revenue by t(c) ≜ p(c)
∫ 1

v̂(c) dG. In these variables, we can restate problem
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(5) as follows:

max
q:[0,1]→[0,1], t:[0,1]→R+

∫ 1

0
(V (q(c)) − t(c)) dF, (7)

s.t. t(c) − cq(c) ≥ t(c′) − cq(c′) ∀ c, c′ ∈ [0, 1],

t(c) − cq(c) ≥ 0 ∀ c ∈ [0, 1].

Problem (7) is analogous to the problem analyzed by Baron and Myerson (1982) if

q is interpreted as a quantity produced and V is interpreted as the welfare generated

by producing quantity q. Its celebrated solution sets the optimal quantity to equalize

marginal welfare benefits with virtual costs and the optimal transfer to guarantee the

incentive-compatible profit distribution:

V ′(q(c)) = c + F (c)
f(c) ,

t(c) − q(c)c =
∫ 1

c
q(x) dx =

∫ 1

c
1 − G(Γ(x)) dx.

By Equation 6, we can translate this solution back to problem (5) as

v̂(c) = c + F (c)
f(c) ,

p(c) = c +
∫ 1

c 1 − G(Γ(x)) dx

1 − G(Γ(c))

= c +
∫ 1

c (x − c)g (Γ(x)) Γ′(x)dx

1 − G (Γ(c)) (integration by parts)

= c +
∫ Γ(1)

Γ(c) (Γ−1(v) − c)g(v)dv

1 − G (Γ(c)) (change of variable with v = Γ(x))

=
∫ Γ(1)

Γ(c) Γ−1(x)g(x)dx

1 − G (Γ(c)) = E[Γ−1(v)|v ≥ Γ(c)].

The optimal algorithm must generate positive buyer surplus at any price, i.e., for all

active prices E[v|v ≥ v̂(p)] ≥ p. If this were not the case for some positive measure of

prices, all those prices could be excluded from trade by setting v̂(p) = 1, and such a

modification would strictly improve buyer surplus, leading to a contradiction. Therefore,
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the buyer is always willing to purchase the product whenever it is recommended.

Finally, note that we have v̂(p) = 1 > Γ−1(1) = p, and the seller’s incentive compati-

bility requires that the threshold function strictly increases in the range of active prices.

Additionally, we have v̂(p) = 0 < p if and only if 0 < Ev[Γ−1(v)] by construction. This

completes the proof.

Proof of Corollary 1 Let A ≜ 1 + 1
α
. We have

Γ(c) = Ac,

p̃(c) = Ev∼G[Γ−1(v) | v ≥ Γ(c)]

= A−1
∫ 1

Ac vβvβ−1dv

1 − (Ac)β

= A−1 β

1 + β

(
1 − (Ac)1+β

1 − (Ac)β

)
.

Thus we have

p = A−1β

1 + β
> 0 and p = A−1 < 1.

We show that a unique p∗ ∈ (p, p) exists such that v̂(p) = Γ(p̃−1(p)) < p for p < p∗

and v̂(p) = Γ(p̃−1(p)) > p for p > p∗. The optimal price p̃(c) is continuous and strictly

increasing in c, and it varies from p to p as we vary c from 0 to A−1. Thus finding p∗ is

equivalent to finding a unique c∗ ∈ (0, 1) such that Γ(c) < p̃(c) for c < c∗ and Γ(c) > p̃(c)

for c > c∗.

To show the single-crossing property, define H(x) and I(x) as follows:

H(x) = x − A−1 β

1 + β

(
1 − x1+β

1 − xβ

)
, ∀x ∈ [0, 1),

I(x) = x(1 − xβ) − A−1 β

1 + β

(
1 − x1+β

)
, ∀x ∈ [0, 1],

and H(1) ≜ limx→1 H(x) = 1 − A−1. Because H(·) is continuous and H(0) < 0 < H(1),

there is at least one x∗ such that H(·) crosses 0 at x∗ from below. Suppose to the
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contrary that there are y, z ∈ (0, 1) such that y ̸= z and H(y) = H(z) = 0. We then have

I(y) = I(z) = I(1) = 0, which means that the generalized polynomial I(·) has three real

positive zeros. However, by Descartes’ rule of signs for generalized polynomials (see, e.g.,

Jameson (2006)), I(·) can have at most two real positive zeros, which is a contradiction.

Thus I(·) has a unique positive zero in (0, 1), which means that there is a unique x∗

with H(x∗) = 0. We conclude that for type c∗ = x∗

A
, we have Γ(c) < p̃(c) for c < c∗ and

Γ(c) > p̃(c) for c > c∗.

Proof of Claim 1

We borrow the notation from the proof of Proposition 1 and let µ = Ev∼G[v]. Suppose

that the buyer faces the optimal algorithm of Proposition 1 in the value disclosure setup.

Because the buyer is willing to follow the algorithm’s recommendation to purchase, it

suffices to show that the buyer is also willing to follow the recommendation to not

purchase. This constraint is equivalent to the condition that the buyer’s ex ante payoff

from following the recommendation weakly exceeds the payoff from always buying the

product regardless of the recommendation. For any active price p ∈ [0, p(c)) (i.e., a price

that some type below c chooses), the condition is written as

V (q(c)) − t(c) ≥ µ − p(c)

or

V (q(c)) − cq(c) −
∫ 1

c
q(x)dx ≥ µ − c −

∫ 1
c q(x)dx

q(c) . (8)

Because q(c) ≤ 1, a sufficient condition for inequality (8) is

V (q(c)) − cq(c) ≥ µ − c.

We can rewrite this inequality as

∫ 1

Γ(c)
vdG(v) − c

∫ 1

Γ(c)
1dG(v) ≥

∫ 1

0
vdG(v) − c

∫ 1

0
1dG(v),

27



or
∫ Γ(c)

0 [v − c]dG(v) ≤ 0.

Finally, the buyer follows the recommendation to not buy the product at any price

p that is not active, i.e., p ≥ p̃(c). Recall that the buyer-optimal algorithm provides no

information about v at price p > p̃(c). Plugging c = c into
∫ Γ(c)

0 [v − c]dG(v) ≤ 0, we

obtain µ − c ≤ 0. Thus if p > p̃(c), we have µ − p ≤ µ − p̃(c) = µ − c ≤ 0.

Proof of Proposition 2

Step 1. We show that the buyer surplus and individual profits do not depend on the

public signal, I. Regardless of the realized signal, the optimal algorithm recommends

trade if and only if v ≥ Γ(c). Hence, the total surplus is independent of I. This also

means that from an ex ante perspective, for any I, the optimal algorithm results in the

same mapping from each type to the trade volume (i.e., type c produces 1 − G(Γ(c))).

Additionally, the highest cost type c = 1 is always inactive. Thus for any I, the buyer-

optimal algorithm, as an indirect mechanism, attains the same allocation rule and the

profit of the highest-cost seller. The revenue equivalence theorem then implies that the

seller’s individual profit is independent of I (Myerson, 1981; Krishna, 2009).

Step 2. We now show that the seller’s information makes the distribution of active prices

undertake a mean-preserving spread. Fix any active type c, and take two accuracies,

αH , αL ∈ [0, 1], with αH > αL. Let Gc
α,s ∈ ∆[0, 1] denote the posterior distribution of

the buyer’s value conditional on (i) signal s being realized under accuracy α and (ii)

v ≥ Γ(c). The equilibrium price of type c after observing signal s with accuracy α is

p(c|s, α) = Ev∼Gα,s [Γ−1(v)|v ≥ Γ(c)] =
∫ 1

0
Γ−1(v)dGc

α,s(v). (9)

Let Gc
α ∈ ∆∆[0, 1] denote the distribution of these posteriors. The (truth-or-noise)

signal with accuracy αH is Blackwell more informative than the signal with accuracy

αL. Therefore, Gc
αH

is a mean-preserving spread of Gc
αL

, and in turn, p(c|s, αH) is a

mean-preserving spread of p(c|s, αL) if viewed as random variables generated by s. This

relationship holds for any given type c, and the mean-preserving spread relationship is

closed under mixtures (e.g., Theorem 3.A.12(b) of Shaked and Shanthikumar (2007)).
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As a result, the ex ante prices under accuracy αH are also a mean-preserving spread of

the ex ante prices under accuracy αL.

Step 3. We turn to the distribution of individual surpluses. First, we calculate the

buyer’s surplus for a given pair of (v, c). Because signal s is drawn from the truth-or-

noise signal with accuracy α, posterior Gα,s places probability α on v = s and probability

1 − α on the event that v ∼ G. Thus, Equation 9 can be expanded as:

p(c|s, α) =


Ev∼G[Γ−1(v)|v ≥ Γ(c)], if s < Γ(c),

αΓ−1(s) + (1 − α)Ev∼G[Γ−1(v)|v ≥ Γ(c)], if s ≥ Γ(c).

If the buyer has value v < Γ(c), then in equilibrium the algorithm never recommends

the product, and the buyer’s expected payoff is nil.

If the buyer has value v > Γ(c), then the realized signal is v with probability α and

is an independent draw from G with probability 1 − α, leading to the buyer’s expected

payoff:

w(v, c, α) = v − α
(
αΓ−1(v) + (1 − α)Eṽ∼G[Γ−1(ṽ)|ṽ ≥ Γ(c)]

)
− (1 − α)Es∼G[p(c|s, α)]

= v − α2Γ−1(v) − (1 − α2)Eṽ∼G[Γ−1(ṽ)|ṽ ≥ Γ(c)].

Only the first two terms in this expression depend on v. We can now view w(v, c, αH)

and w(v, c, αL) as transformations of random variable v ∼ G(·|v ≥ Γ(c)) with two

properties. First, w(v, c, αH) and w(v, c, αL) have the same mean under G(·|v ≥ Γ(c)),

i.e., Ev∼G[w(v, c, αH)|v ≥ Γ(c)] = Ev∼G[w(v, c, αL)|v ≥ Γ(c)]. The reason is as follows:

Between accuracies αH and αL, the interim profit of type c and the allocation of the

product remain the same (as shown above). Moreover, the buyer with any value v < Γ(c)

obtains zero payoffs. Hence, the buyer surplus conditional on v ≥ Γ(c) must be equal

between αH and αL.

Second, the cumulative distribution function of w(v, c, αH) crosses that of w(v, c, αL)

once and from below. To see this, note that because αH > αL and Γ is monotonically
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increasing, we have

∂

∂v
w(v, c, αL) = 1 − α2

L

∂

∂v
Γ−1(v) > 1 − α2

H

∂

∂v
Γ−1(v) = ∂

∂v
w(v, c, αH) ≥ 0, (10)

where the last inequality holds due to the monotonicity of the hazard rate:

1 − α2 ∂

∂v
Γ−1(v) ≥ 1 − ∂

∂v
Γ−1(v) = 1 − 1

Γ′ (Γ−1(v)) = 1 − 1
1 +

(
F
f

)′ ≥ 0.

Inequality (10) and the equal mean property imply that w(0, c, αL) < w(0, c, αH) and

w(1, c, αL) > w(1, c, αH). For i ∈ {H, L}, let Ji denote the CDF of a random variable

w(v, c, αi) (recall that c is fixed here). Let [wi, wi] be the range of w(v, c, αi), and define

w−1(x, αi) ≜ max{v ∈ [0, v̄] : w(v, c, α) = x}, which is well-defined on [wi, wi]. Then,

we have

Ji(x) =



0, if x < wi,

G(w−1(x, αi)|x ≥ Γ(c)), if wi ≤ x ≤ wi,

1, if wi < x.

Because w(v, c, αL) crosses w(v, c, αH) once and from below as a function of v, JH(x)

crosses JL(x) once and from below.

In turn, these equal mean and single-crossing properties imply, by Theorem 3.A.44

(Condition 3.A.59) of Shaked and Shanthikumar (2007), that w(v, c, αH) is a mean-

preserving spread of w(v, c, αL).

We showed that for a fixed (v, c), the individual surpluses of values v ≥ Γ(c) under

accuracy αH are a mean-preserving spread of those individual surpluses under accuracy

αL < αH . The same relationship trivially holds for individual surpluses of values v <

Γ(c), because those types do not trade. In other words, for any fixed c, the buyer surplus

w(v, c, αH) is a mean-preserving spread of w(v, c, αL), both conditional on v < Γ(c) and

v ≥ Γ(c). Because those two scenarios are mutually exhaustive, it follows that for any

fixed c, the distribution of the buyer’s surplus under accuracy αH is a mean-preserving
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spread of distribution of the buyer’s surplus under accuracy αL. Because this relationship

holds for each c and the mean-preserving spread relationship is closed under mixtures,

the same property holds ex ante.
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