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Abstract

Blockchain platforms have been hailed for ushering our digital economy into Web3.0, a more

transparent, inclusive, and equal era of the Internet. To do so, blockchain platforms aim to

disintermediate digital platforms by substituting a centralized authority with a network of peers

who collectively validate and record transactions based on rules predefined in a public protocol.

As this decentralization necessitates limiting the transaction supply, most blockchain platforms

rely on a market mechanism to allocate the transaction recording service. We study how this

market mechanism influences what type of applications can be sustainably offered on such

platforms. Based on a sample of 1,560 applications running on Ethereum, the most popular

blockchain platform, we show that allocating transactions by a market mechanism favors some

types of applications over others and reduces the heterogeneity of platform complements. This

finding highlights a trade-off between decentralization and blockchain neutrality—a new notion

we introduce as the principle that all actors on a blockchain platforms are treated equally. This

trade-off is especially problematic as blockchain platform providers have no governance tools

to mitigate this market discrimination and allow all types of applications to be offered on the

platform.
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1 Introduction

Blockchain technology aims to disintermediate digital platforms by substituting a centralized au-
thority with a network of peers who collectively validate, enforce, and record transactions based on
rules predefined in a public protocol (Nakamoto 2008). According to its proponents, this disinterme-
diation limits platform providers’ excessive power and allows platform architects to design platforms
where the created value is distributed more evenly among all participating parties (Catalini and
Tucker 2018, Vergne 2020). Based on these promises, Gavin Wood, one of Ethereum’s founding
fathers, envisioned that blockchain technology will usher us into Web3.0, a new, more transparent,
inclusive, and democratic version of the Internet where nobody has and advantage over anyone else
(Wood 2014). With this vision, he spurred a whole new industry that aims to disrupt prevailing
digital platforms across industries such as finance, gaming, insurance, and health and foster the
Internet’s democratization.

However tempting this vision of a fully decentralized version of the Internet might be, it is also
important to consider that disintermediation is no panacea free from limitations. For example, it
is commonly known that blockchain platforms bear higher coordination costs as protocol changes
require a consensus by the community, and higher storage costs as the same data is replicated across
different nodes (Pereira et al. 2019). Further, while limiting the platform providers’ power through
decentralization can prevent them from exploiting their users (Wood 2014), it also removes their
governance tools often necessary to orchestrate a healthy ecosystem of complements (Cennamo and
Santaló 2019, Tiwana et al. 2010, Staub et al. 2022). In this study, we introduce another important
trade-off: the trade-off between decentralization and what we refer to as blockchain neutrality—the
principle that no complementor is prioritized over other complementors.

To replace a central platform authority with a peer-to-peer network that collectively validates,
enforces, and records transactions, blockchain protocols typically limit the supply of transactions.
Limiting the supply is necessary to allow as many validators as possible to join and help maintain
the network. Not limiting the supply of transactions would favor validators with the most powerful
machines as they could increase the transaction throughput up to a point where less powerful
machines fail to stay synchronous to the longest chain preventing them from contributing new
blocks and fostering the network’s re-centralization. To allocate the limited transaction supply,
most blockchain platforms like Bitcoin and Ethereum rely on a market mechanism to determine
the price for transacting on the platform (Buterin 2014, Nakamoto 2008). The limited supply
of transactions in combination with a market mechanism has led to skyrocketing transaction fees
in the past. As a result, some dApp providers saw a decline in their dApp’s usage and decided
to leave the platform. Most prominently, Dapper Labs (dapperlabs.com), the developer of the
CryptoKitties collectibles game, left and developed their own blockchain platform called “Flow”.
At the time of writing, Flow hosts 427 dApps.1 To understand if the market exit of dApp providers
like Dapper Labs underlies a systematic pattern, we investigate the consequences of decentralizing
a transaction platform by replacing a centralized platform intermediary with a network of peers
that allocates the limited supply of transactions through a market mechanism. Specifically, we are
interested in whether such platforms are able to host a variety of different applications and become
the general-purpose infrastructure necessary to deliver the promises of Web 3.0.

Although the platform literature emphasizes the importance of a healthy and diverse ecosystem
of complements for platforms to prosper (Rietveld et al. 2020), available research on blockchain
platforms mainly focuses on validators, users, and the overall stability of the transaction fee market

1Cf. https://www.flowverse.co/. Most of these dApps are gaming and NFTs collectibles dApps and are exclusive
to the Flow blockchain. The most famous example is NBA Top Shots (nbatopshot.com), which has already attracted
more than USD1.1b in sales until January 2023 (https://www.flowverse.co/applications/nba-top-shot).
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(e.g., Basu et al. 2019, Easley et al. 2019, Ilk et al. 2021). How the usage of a market mechanism
to allocate transactions affects complement heterogeneity, and thus the platform ecosystems health
and appeal, remains understudied. To address this gap, we ask the following research questions:
how does a market mechanism for the decentralized validation of transactions affect the usage of
platform complements? What complements will be offered on blockchain platforms in the long run?

To answer these research questions, we draw parallels to the literature on net neutrality (Choi
et al. 2018, Guo et al. 2012, Krämer and Wiewiorra 2012, Reggiani and Valletti 2016), introduce
the notion of blockchain neutrality, and argue that current approach to reach decentralization by
limiting transaction supply and allocating it through a market mechanism precludes blockchain
neutrality as it favors some complements over others. Our core argument is that a transaction
fee market mechanism only prioritizes complements based on the transaction fee sensitivity of
their users. Whereas this leads to an efficient allocation for homogeneous transactions (e.g., like
transactions on the Bitcoin network), it can lead to long-run inefficiencies in the case of heteroge-
neous complements. These inefficiencies occur because the market mechanism favors some types
of complements over others based on their current user’s transaction fee sensitivity but not on the
dApp’s overall quality and the value the complement might provide in the future. While platform
complements generally face competition within the same category, the market mechanism for fees
imposes an additional, cross-category externality in the form of congestion costs. With that, if one
complement attracts more users and thus increases the demand for transactions, the transaction
fees for all other complements—irrespective of their category—rise as well, as they all compete for
the same supply of transactions.

This externality is problematic because, as we show in Section 7, there are several characteristics
other than the quality of a complement that determine its users’ sensitivity toward transaction fees
and thus if a dApp will be used. And as the platform provider does not have any governance
tools to protect complements from this externality, if necessary, even some high quality dApps that
would benefit the platform in the long run might struggle to attract users in the short run and
have to leave the platform. As we know from the literature on platform competition, users do not
only care about complements’ quantity and quality (Jin-Hyuk Kim et al. 2014) but also about their
diversity (Rietveld et al. 2019). Thus, an unregulated reduction of complement heterogeneity and
exits due to other reasons than complement’s heterogeneity can hamper a platform’s potential to
leverage same-side and cross-side network effects (Rietveld and Schilling 2020). Further, as the net
neutrality literature emphasizes, losing innovation on the edges of the platform can hamper the
platform’s overall innovation capabilities (Guo et al. 2012). Finally, it raises the concern whether
blockchain platforms that rely on a market mechanism to enforce the execution of transactions can
become a general purpose technology that hosts all types of applications and serves as the backbone
infrastructure for Web 3.0.

We provide empirical evidence for our arguments by relying on the context of the Ethereum
blockchain. Ethereum offers a unique opportunity to study our research questions for three reasons.
First, Ethereum was the first decentralized blockchain platform to enable smart contracts, computer
scripts that enable complementors to offer web applications to the platform users (Buterin 2014).
As these applications run on top of a blockchain, they are called decentralized applications (dApps)
(Wu et al. 2021). Accordingly, Ethereum qualifies as a multi-sided platform where complementors
can offer arbitrary services to platform users. Second, Ethereum uses a market mechanism to
allocate the limited supply of transactions among transaction senders (i.e., platform users). This
market mechanism resembles a first-price auction where users must bid on how much they are
willing to pay for the computational effort required by their transaction (Roughgarden 2020).
Third, Ethereum served as the blueprint for many other blockchain platforms like Avalanche,
Cosmos, or Polygon that now use a similar mechanism to allocate transactions and thus enhances
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the generalizability of our results.
For our empirical strategy, we use daily transaction data from a sample of 1,590 dApps on

Ethereum and estimate different demand curves for different groups of dApps. To address the
endogeneity issues arising from the simultaneous determination of transaction fees by demand and
supply, we introduce Ethereum’s difficulty bomb—which we decribe in detail in Section 6—as a
novel supply-side instrument that has led to exogenous variation in the supply of transactions.

Our analysis yields several findings. First, by finding a downward-sloping demand curve, we
can confirm that the law of demand also applies to transactions on Ethereum. While this finding
seems theoretically trivial, the ongoing debate on the prevalence of speculation activity, extreme
volatility, and illicit transaction activity questions whether blockchain platforms are subject to
standard supply and demand dynamics comparable to other financial markets (Foley et al. 2019,
Li et al. 2018). Our findings provide empirical evidence that helps to settle this debate and move
on with further economic analysis of blockchain platforms. Second, we find that different groups
of dApps significantly vary regarding their sensitivity towards transaction fees and that, in times
of congestion, finance applications crowd out transactions to other applications by increasing the
market price for transacting on the network. Third, our results suggest that building dApp-specific
network effects and bundling transactions more efficiently are the only options a dApp has to
influence its sensitivity towards transaction fees.

With our research, we contribute threefold. First, we contribute to the literature on net neutral-
ity by extending its debate to the realm of blockchain technology, which according to its proponents,
may become an important part of the Internet’s IT infrastructure. Second, we contribute to the
platform literature by showing that decentralizing platforms with blockchain technology and a mar-
ket mechanism to allocate transactions can lead to the undesired consequence of losing innovation
on the platform’s edges. Our findings highlight that blockchain platforms may fall short in or-
chestrating an appealing ecosystem of complements and thus have difficulties competing with their
centralized counterparts if they do not establish a working social layer or develop some governance
tools. Further, our findings help to understand that blockchain platforms are less prone to “winner-
take-all” dynamics and that it is more likely that we will see an ecosystem of different blockchain
platforms than one dominate platform hosting all types of dApps. Finally, we also add to the bur-
geoning literature on transaction fees on blockchain platforms by introducing a novel instrument
that helps to mitigate endogeneity concerns and help future scholars to investigate the economic
dynamics on blockchain platforms that allow third-party providers to offer additional services in
the form of dApps.

2 Related literature

Our research draws from three streams of prior research.
The first stream is the literature on net neutrality. As blockchain platforms prioritize transac-

tions based on how much the transaction sender is willing to pay to the validation service providers
for the execution of their transaction, we argue that many arguments of the net neutrality debate
can be transferred to the blockchain realm. Specifically, we see similarities to a sub-stream of this
literature focusing on the implications of net neutrality on content heterogeneity and innovation
by small content providers at the edges of the Internet (e.g., Reggiani and Valletti 2016, Guo et al.
2012, Krämer and Wiewiorra 2012). To draw parallels to this debate, we define blockchain neu-
trality as the principle that all transactions on a blockchain are treated equally, and transaction
validators cannot charge dApp providers for prioritizing their transactions. While superficially
blockchain neutrality seems to be warranted as there is no payment stream between validators and
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dApp providers, the fact that dApps might differ regarding their transaction fee and congestion
sensitivity might jeopardize blockchain neutrality as the market mechanism favors some dApps
over others. By introducing the notion of blockchain neutrality, we seek to draw attention to the
potential implications of violating this principle as it could lead, as observed in the context of net
neutrality, to a loss of innovation on the edges of blockchain and hamper its overall innovation
capability.

The second stream of literature is the literature on platform ecosystem governance. For a review
see Rietveld and Schilling (2020). This stream investigates how the rules set and control exerted by
the platform provider influence the emergence of a healthy ecosystem of complements, the platform’s
innovation capability, and the overall value created on the platform (e.g., Cennamo and Santaló
2019, Cennamo 2018, Tiwana et al. 2010, Staub et al. 2022, Wareham et al. 2014). It questions the
often taken-for-granted tenet of network effects that suggests that a greater breadth and depth of
complements is typically beneficial by emphasizing that unfiltered growth of the complementors side
can pose the risk of platform congestion and decrease consumers’ value (e.g., Casadesus-Masanell
and Ha laburda 2014). Therefore, this literature makes a strong case that platform providers must
carefully orchestrate a healthy ecosystem of complementors to maintain the platforms innovation
capability and ensure its long-run success. Our research adds to this stream as blockchain platforms
challenge the core assumption of a central orchestrator governing the platform and thus allow us
to understand the implications of substituting a strong “visible” hand with an “invisible” hand of
a decentralized market that prioritizes transactions based on the users’ willingness to pay on the
ecosystem of complements.

The third stream is the nascent literature that studies transaction fee mechanisms on blockchain
platforms. Within this literature, scholars have already started to characterize blockchains as
marketplaces where miners offer their services to transaction senders and study the dynamics of
these marketplaces (e.g., Basu et al. 2019, Easley et al. 2019). There are only few empirical studies
estimating impact of transaction fees on the usage of blockchain platforms, and most focus on the
Bitcoin blockchain (e.g., Easley et al. 2019, Ilk et al. 2021). For Ethereum, this evidence is still
lacking. Although few accounts investigate the relationship between network congestion and gas
prices (Donmez and Karaivanov 2021) or gas prices and throughput (Azevedo Sousa et al. 2021,
Spain et al.), or how high gas fees antagonize Ethereum’s goal of inclusion and democratization
by excluding users who cannot afford the increasing gas fees (Cong et al. 2022), there is a paucity
of research that analyzes supply and demand dynamics on Ethereum and in particular how these
impact dApp usage across different dApp groups and how this influences the variety of dApps
offered on Ethereum in the long run.

3 Ethereum’s market for transactions

To validate, enforce, and record transactions users send to dApps, Ethereum uses a decentralized
transaction mechanism. Prior scholars have already characterized Bitcoin mining, which uses a
similar mechanism, as a two-sided market (e.g., Basu et al. 2019) and a market for data space more
specifically Ilk et al. (2021). We also characterize Ethereum’s transaction validation and execution
process as a market but highlight some important differences due to Ethereum’s capability to run
smart contracts and offer dApps.

In contrast to Bitcoin and to facilitate dApps and arbitrary transactions, Ethereum does not
charge a fee per transaction but a fee for the computational effort a transaction requires. A
transaction’s computational effort is measured in units of gas according to a list that indicates
a fixed gas requirement for every atomic computation. To maintain decentralization by ensuring
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that miners with less powerful machines can also participate in mining transactions and to prevent
that the network gets trapped in an infinite loop of computation, the maximum gas of a block
is limited (block gas limit). In addition to limiting the total gas a block can use, the Ethereum
protocol also tries to keep the average time it takes to find a new block (average block time) within
a 12 to 14 seconds interval. These two limitations imply that the total amount of available gas
has an upper limit. To allocate the limited gas supply, Ethereum uses a market mechanism that
we conceptualize as a market for transactions or, more specifically, a market for the validation and
enforcement service of transactions.

The commodity sold on this market is the gas required to validate a transaction.2 Accordingly,
users (transaction initiators) are the buyers, whereas miners are the sellers of this commodity. On
the supply side, the supply of gas on each day is fixed due to the block gas limit and the limited
average block time. Although miners can decide to what extent they use this limit, they cannot
change it individually. Changing this limit requires successful voting by all miners and a protocol
update. Also, suppose more miners join the network and participate in the race to solve the mining
puzzle. In that case, the network will increase the mining difficulty (i.e., the number of hashes it
takes on average to find a new block) to keep the average block time within the target window of
12 to 14 seconds and keep the supply of gas fixed.3

On the demand side, users cast transactions to other externally owned accounts or smart con-
tracts. To initiate a transaction, users must indicate a transaction gas limit (i.e., the maximum
amount of gas a miner is allowed to use to compute the transaction) and a gas price(e.g., the price
the user is willing to pay for each unit of gas). If the gas limit is reached before the transaction is
fully computed, the transaction will be aborted and not included in the block. Users only pay for
the used gas if the computation is finished before reaching the limit. Also, only the actually used
gas is considered for the block gas limit. Accordingly, the fees a user has to pay is the product of
gas used and the gas price the users is willing to pay for every unit of gas.

As the supply of gas is limited, transaction senders compete with other senders by choosing a gas
price that is high enough that miners pick their transactions from the pool of pending transactions.
Typically, miners engage in profit maximization (Basu et al. 2019). Hence, they sort transactions
by the indicated gas price and requirement and fill up the block until its gas limit is reached.
Especially in times of congestion, offering too low a gas price means that a transaction will not be
picked up by any miner and ultimately be deleted from the pool of pending transactions. This gas
price mechanism has led to considerable fluctuations in the amount of gas used, and the price users
have paid for a unit of gas. For illustration, Figure 1 depicts the daily gas usage on the left and
the daily average gas price on the right.

———– insert Figure 1 about here ———–

4 Conceptual framework

The driving force behind our framework is that the usage of a dApp—hence its success—on
Ethereum depends on the usage of the platform, which in turn again depends on the usage of
other dApps.4 However, due to two countervailing forces, it is unclear if increasing the user base

2It is important to note that the transaction initiator only has to pay the gas fees for the computation of the
transaction but not for the computational effort the miner has to invest solving the PoW puzzle that is required to
find a new block.

3See Appendix A for the formula used to compute the mining difficulty.
4It is important to note that although our empirical analysis is—due to the selection of our instrumental variable—

limited to a period when Ethereum relied on PoW as a consensus mechanism, our theoretical arguments also apply
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and dApp base benefits all dApp providers. On the one hand, entering dApps attract new users
to the platform, which fosters the platform’s adoption, and enlarges the number of possible users
of the focal dApp. On the other hand, the limited supply of transactions in combination with
the first-price auction that allocates this limited supply aggravates the direct competition among
dApps by introducing a negative externality: new dApps and users increase demand and intensify
the competition for the limited supply of gas. The increasing demand and competition lead to
increasing congestion costs and higher gas prices. Because transaction initiators need to pay trans-
action fees to interact with every dApp, increasing gas prices lessen the overall utility and, thus, the
usage of dApps. Accordingly, the relative magnitude of these countervailing effects will determine
the effect of Ethereum’s market for transactions on the success of the platform complements.

Although the net impact of increasing gas prices as a response to more platform usage is the-
oretically undetermined—due to the countervailing forces described above—we can analyze which
characteristics of a dApp expose it more to changes in the gas price. Understanding this is not only
useful for the complementors’ decision to enter such a market but also for the platform provider, as
it might have important implications for the heterogeneity of complements offered on the platforms.
We hypothesize that depending on four characteristics, dApps are more or less sensitive to changes
in the gas price and, therefore, better or worse equipped to compete in a market for transactions.

First, we expect that the type of service a dApp offers influences its sensitivity towards changes
in the gas price. This intuition becomes clear when considering that some dApps provide social and
entertainment services while others provide financial or security-related services. Although finance
dApps do not necessarily provide more utility to users than leisure-related dApps, it is easier to
compute the expected utility of a finance transaction. Therefore, it should be easier for users
to evaluate if they still want to send a transaction whereas for other dApps the uncertainty and
cognitive effort to gauge the expected utility will deter them from sending a transaction. Further,
finance-related transactions are often more time-sensitive, and as Donmez and Karaivanov (2021)
show, users on Ethereum are more willing to pay higher gas fees for timely transactions.

Second, even within the same type of service, dApps can substantially differ regarding the
requirements of the transaction. For example, dApps can differ in the complexity of the underlying
transaction and hence the gas required for the computation of it. On the one hand, the gas
requirement correlates with the complexity of the underlying functionality. On the other hand, it is
also driven by the efficiency of the code itself. Particularly within the same type of service, where
the functionality and complexity of transactions with dApps is similar, the code’s efficiency should
be the main determining factor for the gas requirement. Especially in times of high gas prices, we
expect users to be more sensitive to such differences and use dApps that require less gas for the
same functionality. Another factor determining a dApp’s gas price sensitivity should be the value
transferred in a transaction with a dApp. For example, considering that some NFTs are sold for
well above $100,000, it becomes evident that even gas fees of a few dollars are negligible. Therefore,
we expect that depending on the average transaction value that a dApp usually carries, the dApp
should be more or less sensitive to changes in the gas price.

Third, dApps also differ in the overall quality of their services or their usability and hence in
the value they create for their users. Accordingly, some dApps are more appealing to users than
others. These dApps should not only perform better at baseline but are also more likely to benefit
from the entry of other dApps. Consider, for example, that numerous new dApps enter Ethereum.
This should attract additional users since users appreciate product variety. But once the users join,
they will disproportionately choose the dApp offering more utility. This effect can be exacerbated if

to the period when Ethereum updated to PoS as PoS only removed the computationally expensive mining puzzle but
still requires users to pay gas fees
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the dApp itself benefits from network effects, which should be the case for dApps such as currency
exchanges, marketplaces, or social messengers. For such dApps, the increasing utility due to the
larger network could counterbalance the additional fees resulting from the intensified competition
for gas among dApp users.

Fourth, the current performance of a dApp should influence users’ willingness to pay for a
transaction with the dApp. Again, especially for dApps that rely on network effects, the number
of other users of a dApp should increase the utility of transacting with this dApp.

To understand how Ethereum’s market for transactions influences dApp usage, we next empir-
ically investigate the drivers of dApps’ transaction fee sensitivity as hypothesized above.

5 Data and sample construction

5.1 Research context and data

We combine daily block and transaction-level data publicly stored on the Ethereum blockchain
with three different data sources that provide supplementary off-chain data, such as the category
of the dApp or the exchange rate for one Ether or other tokens.

5.2 Data collection procedure and sample

We obtained our data from four different sources. First, We use the Ethereum ETL to download all
block-level and transaction-level data. Second, we use two websites that provide a curated list of
dApps (stateofthedapps.com and defillama.com) to identify dApps that are running on Ethereum,
the addresses of their associated smart contracts, and the category of the application. This step
allows us to map the pseudonymous smart contract addresses on the blockchain to their respective
dApp and is necessary because a dApp can consist of multiple smart contracts. Overall, we identified
1,590 dApps with 4,680 associated smart contracts active in our study period. Thrid, we use the
Etherscan API to collect further daily network-level data, such as the network utilization, which
measures the extent to which the block gas limit has been used. Finally, we retrieve the daily prices
for one Ether and other tokens associated with the dApps in our sample from the CoinGecko API.5

To ensure that all variables are on the same level and to mitigate high-frequency variation in the
data, we first merge the block-level and transaction-level data by using the block hash reported for
every transaction and then aggregate the resulting data at the daily level. Our consolidated dataset
covers 1,279 days. Table 1 provides an overview of the number of dApps per group of categories.6

——– insert Table 1 about here ——–

5.3 Data sets, variables, and measurement

Besides the daily aggregation, we further aggregate transactions on the level of a dApp.
Our main variable of interest is the quantity of gas used (gasUsedt). It refers to the daily amount

of computational validation effort demanded by all transactions with a dApp. It is measured in
Giga gas units. This variable operationalizes the goods supplied by the miners and demanded by
the transaction senders.

5https://www.coingecko.com/en/api/
6To mitigate multicollinearity issues arising from similar transaction patterns across similar categories, we ag-

gregated the 17 categories into 5 groups that resemble in the type of service they offer. We obtained the groups by
applying a cluster analysis to variables like daily transaction count and transaction value.

7



The gas price is the price (in GWei) transaction initiators must pay for each gas unit. As the
gas price an initiator pays varies according to the outcome of a first-price auction, we define the gas
price in times of the marketGasPricet a sender would have had to pay for their transaction to just
make it into one of the blocks on a given day. We proxy this market price with the daily average of
the bottom fifth percentile gas price recorded on each block on that day in GWei. We use this proxy
because there are blocks in whose validation miners circumvent the first-price auction mechanism
by adding their own transactions with a gas price close to zero or even zero. Accordingly, using
the marginal gas price (i.e., the lowest gas price on a day at which a transaction is just included in
a block) would not correctly reflect the market mechanism. We also run several robustness checks
with alternative gas price variables (e.g., different percentiles of the gas price in USD).

We define the variable difficulty bomb (difficultyBombt) as the average additional difficulty
induced by Ethereum’s difficulty bomb on a given day. Next to the automated adjustment of the
mining difficulty, the difficulty bomb is the second mechanism encoded in Ethereum’s protocol that
influences the total network difficulty (i.e., the average number of hashes it takes to find a block).
The goal of the difficulty bomb is to force miners to switch from PoW to PoS once the PoS update
is available. To this end, the difficulty bomb exponentially increases the mining difficulty until it
is almost impossible to find new blocks by solving the PoW puzzle. As Ethereum planned right
from its start to switch to PoS at some point, the difficulty bomb was always part of the protocol.
However, because the update to PoS was delayed several times, the difficulty bomb increased the
difficulty too fast, resulting in a disproportionate increase that was not reflected by the network
hash rate and the discovery of significantly fewer blocks per day. Because the resulting shortage
in gas was not intentional (the plan was that PoS-blocks would grow at the same rate as the PoS-
blocks would decline), the Ethereum community issued a protocol update that turned back the
additional difficulty. Over our study period, this pattern occurred three times and is reflected in
three protocol updates (EIP649, EIP1234, and EIP2384). As the difficulty induced by the difficulty
bomb is not reported in any database, we leverage the fact that Ethereum’s protocol continuously
tried to keep the block time within the target window of 12-14 seconds and constructed the variable
as follows. The difficulty induced by the difficulty bomb on a day d is the difference between the
total observed difficulty and the theoretical difficulty required to reach the target block time, given
the current hash rate in the network. Accordingly, the difficulty bomb on a day d is:

difficultybombd = (networkhashrated × targetblocktime) − difficultyobserved,d

The unit of this variable is the number of Tera hashes it requires on average to find a new
block. Due to the exponential growth and the fluctuation of the network difficulty within the target
window, especially at the beginning of the activity of the difficulty bomb, the added difficulty is not
always distinguishable from zero. To account for this fact, although the difficulty bomb is always
active, we only assign a positive value to the difficulty bomb if the block time is noticeably above
the target window (> 14s). According to this conservative approach, we only observe on 16% (182
days) of all days in our sample a difficulty bomb above zero. To establish robustness, we also use
different cutoffs and approaches to measure the activity of the difficulty bomb. We will discuss our
instrument’s relevance and exogeneity later in the empirical strategy and results section. Figure 2
overlays the network hash rate with the observed total mining difficulty. Gaps between both curves
indicate excessive difficulty added by the difficulty bomb.

———– insert Figure 2 about here ———–

To account for the degree to which miners fill the blocks on a given day, we measure the
network utilization (networkUtilization) as the fraction of total available gas (sum of the gas limit
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of all blocks) on a day that is used by all transactions on that day in percent. It captures the
platform’s usage level and has been used by prior researchers as a measurement for congestion
(Donmez and Karaivanov 2021).

In addition to these variables, we compute several measures that allow us to study the transac-
tion requirements of each dApp or their usage patterns. To reflect the complexity of an interaction
with a dApp, we measure the average gas requirement (avgGasRequirement) of a transaction with
a dApp. To reflect the requirements of a transaction with a dApp, we measure the average value
of Ether (avgValue) or (avgTokens) a dApp receives as a proxy for how much value transactions
with the dApp usually carry. In addition, we measure the following performance indicators for ev-
ery dApp: average daily transaction activity (avgDailyTxn), average number of unique externally
owned accounts (avgDailyEOA) that transactions with a dApp (i.e., our proxy for users),7 the
average gas price users pay for a transaction with a dApp (avgGasPricePaid), the average number
of transactions per externally owned account on a given day (avgTxnPerEOA), and the surplus gas
price the transaction senders paid beyond the market gas price on a given day surplusGasPrice.

We also control for the following network-level variables: Ether price (EtherPrice) measures the
price of one Ether in USD on the day the transaction was executed; Ether volatility EtherVolatility
measures the daily change in the exchange rate of one Ether; gas limit gas Limit measures the sum
of all block gas limits on a day and accounts for the fact that over our sample period, the total units
of gas that can be used in a block has been increased several times; and finally day of the week
(weekday) and year (year2017-2020 ) dummy variables, and a trend (trend). Appendix 8 provides
descriptive statistics and correlation scores for all variables in our data set.

6 Estimation strategy

In this section, we discuss our baseline specification and the instrumental variable (IV) we use to
address the endogeneity of the gas price.

6.1 Baseline specification

The specification for our dApp-level analysis is:

log(gasUsedtd) = α0 + α1 log(marketGasPricet) + α2networkUtilizationt+

α3networkUtilization
2
t + α4 log(EtherPricet) + α5 log(EtherVolatilityt)+

α6 log(gasLimitt) + µday of week + µyear + µd + trend + ut

where gas used is the equilibrium gas demand for each dApp d in the period t (day). We chose
a log-log specification for gas used and market gas price to be able to interpret α1 as the price
elasticity of the demand. Due to the skewed distributions of Ether price, Ether volatility, and
the gas limit, we use log-transformed versions of these variables in our specification. The network
utilization allows us to control for the degree to which miners use the available block gas limit on
a given day and has been used by prior scholars as a measure of network congestion (Donmez and
Karaivanov 2021). We also add a quadratic term to account for the nonlinear relationship between
gas price and network utilization.8 In addition to these variables, we also control for the intrinsic

7Technically it is possible to differentiate between smart contract addresses and wallet addresses, but not if a
wallet address is controlled by a bot. To account for this fact, we refrain from calling wallet addresses “users” and
call them instead “externally owned accounts” to emphasize that they do not necessarily correspond to human users.
Therefore, this variable is only a proxy.

8We also compute the same model with a threshold specification where we added only the linear term and dummy
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growth of the dApp by adding agedt as the number of days since the dApp entered the platform
and specify µd as dApp fixed effects, µdayofweek as a day of week fixed effects, µyear as a year fixed
effects, and ut as the error term.

6.2 Validity of the instrument

In this model, log(gasUsedt) and log(marketGasPricet) are the endogenous variables, as both are
jointly determined in equilibrium. To address this simultaneity issue, we use the difficultyBomb as
an instrumental variable in a two-stage least squares approach (2SLS). In the first stage, we use the
difficulty and all other control variables listed above to predict the log(marketGasPricet). In the
second stage, we estimate the specification above by replacing the log(marketGasPricet) with its
predicted value. The economic intuition underlying our approach is that we leverage the difficulty
bomb as an exogenous supply shifter. Due to the consistent adjustment of the network difficulty
and the resulting constant block time, the gas supply curve resembles a fixed vertical line. When
the difficulty bomb is active, the added difficulty increases the block time and thus decreases the
number of blocks on a given day. As the maximum gas a block can contain is limited, fewer blocks
lead to a decrease in the gas supply and hence a horizontal shift of the supply curve to the left. We
exploit this supply shift to identify the demand curve.

We argue that the difficulty bomb is exogenous and influences the gas demand only through
the increased gas price for three reasons. First, it is programmed into the Ethereum protocol, and
changing it requires a successful protocol update (called Ethereum Improvement Proposal or EIP)
which is only possible after a majority vote and hence unlikely to be a response to a short-term
market situation. Therefore, the difficulty bomb and its resets bomb can be seen as exogenous
policy interventions. Second, as the difficulty level is not reported in wallet applications or by an
API and has to be manually calculated (see Section 5.3), it is plausible to assume that ordinary
Ethereum users were not aware of the existence of the difficulty bomb. Third, even if users were
aware of the existence of the difficulty bomb, it is difficult for them to comprehend its exponential
growth and differentiate its impact—at least in the initial phase—from normal fluctuations due to
the exit and entry of miners. Further, it would also be difficult for users to predict the mining
power and cost structure of every single miner and to evaluate when they cannot keep up with the
difficulty level.

7 Results

7.1 Baseline dApp-level results

Following our baseline specification, Table 2 reports the results of our 2SLS demand curve esti-
mation. Column 1 presents the first stage results, where we predict the gas price (log(Market gas
price)) with our IV (difficulty bomb). Column 2 presents the second stage results, where we use
the predicted gas price to estimate the price elasticity of the gas demand (log(Gas used)).

—– insert Table 2 about here —–

Consistent with our prediction, Columns 2 and 3 suggest a downwards-sloping demand curve for
gas on Ethereum. The first stage reported in Column 1 shows that an increase in additional difficulty
due to the difficulty bomb is significantly associated with increased gas prices. This is in line with

variable that takes on the value one if the utilization level exceeds 90%. They were qualitatively the same regarding
the magnitude and significance of the coefficients we obtained.
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our explanation that the added difficulty reduces the supplied gas—by reducing the number of
blocks explored per day—and thus intensifies price competition among transaction senders. The
coefficient of the difficulty bomb is highly significant even though we control for network utilization
(i.e., the degree to which miners use the available block space), network utilization squared, the
exchange rate of Ether to USD, the daily fluctuation of this exchange rate, the block gas limit, as
well as day of the week and year dummies and a common trend.

Regarding the validity of our instrument, by comparing the first-stage with and without the
instrument, we obtain an incremental F (121.39) that is well beyond the suggested cut-off of 10
(Stock and Yogo 2005) and thus suggests that our instrument strongly correlates with the endoge-
nous gas price. Further, we compute the Stock-Yogo test for weak instruments, which shows that
the Cragg-Donald-Wald F Statistic (2542.47) exceeds the predetermined critical value (16.38).

To interpret the magnitude of the effect of the gas price (log(marketGasPricet)) on the demand
of gas log(Gas used), the coefficient of -0.64 implies that a 1% increase in the market price of
a unit of gas decreases the amount of gas demanded by 0.64%. Considering that the average
transaction on Ethereum consumes 184,000 units of gas (which corresponds to a normal smart
contract interaction), this equals a decrease of roughly 1,703 smart contract transactions per day
or 14,923 Ether transfers which require 21,000 units of gas. Considering that the median dApp
only receives eight transactions per day, the order of magnitude of this effect can have significant
economic implications.

In sum, this analysis provides first empirical evidence that the well-established “law of de-
mand” (Gale 1955) also applies to the validation service of transactions on Ethereum. It also
provides evidence that Ethereum’s gas price mechanism introduces a form of price competition
among transaction senders that counteract the main prediction of the two-sided market literature
(Rochet and Tirole 2006), i.e., that, due to the same-side network effect, an increase in the demand
side draws even more consumers into the market and leads to subsequent increases in demand.
On Ethereum, an increase in transaction senders increases not only the utility of transacting on
Ethereum but also price competition. However, as the demand for gas is negatively associated with
its price, the market mechanism underlying Ethereum’s transaction validation process dampens the
effectiveness of same-side network effects.

7.2 Differing demand curves per group

Column 3 in Table 2 reports the different demand curves for each group of dApps. We obtain these
demand curves by interacting the instrumented market gas price with the group of a dApp.

With a positive and significant coefficient (0.27) for our reference group (finance dApps), our
results suggest that the demand curve for these dApps in upward-sloping. An explanation for this
upward-sloping demand curve could be that the entry of additional finance-related dApps has caused
an influx of high willingness-to-pay customers and that the network effects these finance-related
dApps realize compensated for the higher transaction fees these transaction senders had to pay. This
explanation is in line with prior research that describes networked goods (e.g., financial services)
by irregularities such as an upward-sloping demand curve for low quantity levels (Economides
and Himmelberg 1995). Particularly, if a service relies on strong network effects, no one will
pay for the product if no one else uses it. Although the entry of high willingness-to-pay users is
typically beneficial for a platform, the fact that we observe downward-sloping demand curves in
the form of negative moderations of all other groups poses a danger that, particularly in times of
high transaction fees, dApps from other groups are not used anymore and finally have to leave
the platform. This reduction of complement heterogeneity can ultimately harm the long-term
attractiveness of Ethereum, especially as a general-purpose platform.
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7.3 Heterogeneous effect of Ethereum gas price mechanism

Beyond the category of a dApp, we use our rich data to further explore the characteristics of
dApps that impact their sensitivity toward the gas price. We use these characteristics as additional
moderating variables in our baseline analysis and add them as two-way interactions with the market
gas price and three-way interactions with the market gas price and group of the dApp.

The first set of characteristics pertains to the formal requirements of a transaction with a dApp.
These characteristics are the amount of gas a transaction with a dApp requires and the value of
Ether and tokens a transaction with a dApp usually carries. We find that dApps with a higher
average gas requirement suffer more from changes in the market gas price while dApp with higher
average transaction value are less sensitive to changes in the market gas price. With some minor
variation, this effect applies to all groups of dApps.

Next, we also compute average performance indicators for each dApp. For the average daily
transactions and average daily EOA, we find a positive and significant two-way interaction with
the gas price. This suggests that the demand for gas for transactions with dApps with a high
average of daily transactions and users is less impacted by changes in the gas price. However, by
adding the group dummies to these two-way interactions, we find that this interaction significantly
differs between dApps in group one and all other groups. Whereas dApps in group 1 still seem
to benefit from more transactions and EOAs—as indicated by the positive and significant two-
way interactions between the gas price and the average number of transactions and the average
number of daily EOA (Column 5, 0.39)—the three-way interactions with all other groups are highly
significant and negative. This indicates that for dApps in these groups, the effect of receiving, on
average, more transactions or having more unique EOAs transacting with them is less prevalent
or even makes them more sensitive to changes in the gas price. Again, network effects could be a
plausible explanation for this observation.

To further investigate network effects, we analyze the impact of dynamic usage indicators that
vary for each dApp over time. Regarding the number of transactions per EOA, we find a positive
interaction between the number of transactions per EOA and the gas price (log(Market gas price)).
According to the three-way interactions, except for group 5, this moderation does not significantly
differ between the different groups of dApps. Because for dApps in group five, the interaction is
even stronger than for all other dApps, attracting heavy users might be a valid strategy for these
dApps to survive the competition in a market for transactions. Considering that group 5 comprises
dApps such as storage or energy services and given the strong lock-in effects these services typically
exhibit, also these findings seem plausible.

Overall, the results of our heterogeneity analyses suggest that inherent features of dApp (e.g.,
its gas requirement or if it benefits from network effects) rather than its quality determines users
sensitivity to changes in the market gas price.

7.4 Additional robustness checks

To assess the robustness of our analysis, we tested them against several alternative measures and
samples. For example, we used the transaction count instead of gas used, applied different levels
of winsorization to restrict the impact of possible outliers, used different percentile and levels of
winsorization for the market gas price together with the average gas price, and also a different
measurement of the difficulty bomb where we subtracted the observed number of blocks from the
target number of blocks given the targeted block time. Further, we also conducted our analysis only
for the periods where the difficulty bomb was active. Overall, we find the results to be consistent
with the results of our baseline specification. Moreover, we further report two additional analyses
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that corroborate our results in Appendix 8 and 8.

8 Discussion and conclusions

Decentralized blockchain platforms like Ethereum have been hailed for challenging the dominance
of centralized digital platforms that currently prevail in the digital economy (Murray et al. 2019,
Vergne 2020). However, little is known about how the decentralized transaction validation mech-
anism, which distinguishes blockchain platforms from their centralized counterparts, impacts the
platform by shaping its usage and complements. To investigate this question, we study Ethereum’s
transaction validation mechanism as a market for transactions and use a panel data set of 1,590
dApps together with a novel supply-side instrument to estimate different price elasticities of the
demand for transactions with dApps. We find strong evidence that Ethereum’s gas price mecha-
nism leads to negative network effects (i.e., a growth of the transaction demand makes transacting
more expensive) that counteract the positive network effects usually present on multi-sided plat-
forms. Further, we find that the relative magnitude of these effects depends on characteristics of a
dApp that are mostly predetermined. Particularly, the type and complexity of the service a dApp
offers are decisive factors. For instance, across the board, the demand for transactions with finance
or exchange dApps seems to be less impacted by changes in the gas price than dApps that offer
games, gambling, social, or media-related services. This is especially problematic as the transaction
validation mechanism adds a new externality to the existing competition on such platforms: all
dApps—no matter what service they offer—must compete for the limited gas supply. Hence, it
favors some dApps over others and finally forces disadvantaged dApps to leave the platform leading
to a decrease in the heterogeneity of dApps offered on Ethereum and a reduced value for platform
users who joined because of the variety of complements offered on the platform.

With these findings, we demonstrate that relying on a market mechanism to allocate the lim-
ited transaction supply, which is necessary to ensure decentralization, contradicts the principle of
blockchain neutrality (i.e., no preferential treatment of complements). We have a reason to believe
that these insights extend beyond Ethereum within the period that we study. For example, even
though our empirical identification strategy crucially depends on mining present in PoW, even
blockchains relying on PoS face the same problem. This is because the main factors driving the
discrimination results are limited capacity of transactions and market mechanism to allocate those
transactions. They do not depend on mining or staking procedures.

As decentralization strictly restricts the governance tools of blockchain platform to safeguard
complementors from such discrimination, there are no simple solutions to this predicament. One
potential resolution could involve abandoning the transaction supply limit and accepting a lower
level of decentralization, as large blocks would require more powerful machines to validate and
store. Another solution could be to develop different ways to allocate the limited transaction
supply. Alternatively, we may have to acknowledge that blockchain platforms are not neutral, as
they selectively favor some dApps over others, ultimately limiting the range of applications that can
be offered on decentralized infrastructure. However, adopting this approach would jeopardize the
vision of Web3.0 — a fully inclusive, transparent, and democratic version of the Internet designed
to cater to the needs of all types of applications.
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Cennamo C, Santaló J (2019) Generativity tension and value creation in platform ecosystems. Organization

Science 30(3):617–641, ISSN 10477039, URL http://dx.doi.org/10.1287/orsc.2018.1270.
Choi JP, Jeon DS, Kim BC (2018) Net neutrality, network capacity, and innovation at the edges. The

Journal of Industrial Economics 66(1):172–204, ISSN 00221821, URL http://dx.doi.org/10.1111/

joie.12161.
Cong L, Tang K, Wang Y, Zhao X (2022) Inclusion and democratization through web3 and defi? initial

evidence from the ethereum ecosystem. SSRN Electronic Journal URL http://dx.doi.org/10.2139/

ssrn.4229308.
Donmez A, Karaivanov A (2021) Transaction fee economics in the ethereum blockchain. Economic In-

quiry 60:265–292, URL https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ecin.13025?

download=true.
Easley D, O’Hara M, Basu S (2019) From mining to markets: The evolution of bitcoin transaction fees.

Journal of Financial Economics 134(1):91–109, ISSN 0304405X, URL http://dx.doi.org/10.1016/

j.jfineco.2019.03.004.
Economides N, Himmelberg C (1995) critical mass and network size with application to the us fax market.

Mimeo, Stern School of Business at New York University) .
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Tables and Figures

Figures

Figure 1: Daily gas used and gas price

Figure 2: Hash rate and the impact of the difficulty bomb

Tables

Table 1: Groups of dApps

dApp categories examples dApps

Group 1
finance, exchanges, wallets,
insurance, security

Sushi swap, OmiseGo, Status,
Nexus Mutual, Chainlink

507

Group 2 identity, property ENS Manager, Decentraland 45

Group 3 games, marketplaces Axie Infinity, Cryptokitties 464

Group 4 gambling, social, health FunFair, Minds, BEAT 397

Group 5 energy, governance, media, storage
Dovui, Aaragon, CryptoTunes,
XCloud

177
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Table 2: Demand curve estimation – baseline model (dApp level)

(1) (2) (3)
log(marketGasPrice) log(gasUsed) log(gasUsed)

difficultyBomb 0.20*** (0.0000)

log(marketGasPrice) -0.64*** (0.21) 0.27*** (0.05)

log(EtherPrice) -0.0004 (0.01) 0.15*** (0.04) 0.18*** (0.04)

log(EtherV olatility) -0.01*** (0.0004) 0.01** (0.004) 0.02*** (0.003)

networkUtilization -2.36*** (0.06) -1.20** (0.47) 0.30*** (0.11)

networkUtilization2 16.30*** (0.37) 8.59*** (3.29) -1.89*** (0.68)

log(gasLimit) 2.40*** (0.03) 1.89*** (0.53) 0.13 (0.20)

Age 0.001*** (0.0000) -0.002*** (0.0003) -0.002*** (0.0002)

Year2018 -0.82*** (0.02) -0.68*** (0.22) -0.09 (0.15)

Year2019 -1.09*** (0.02) -0.66*** (0.25) 0.07 (0.15)

Year2020 -0.95*** (0.02) -0.28 (0.24) 0.36** (0.16)

weekdayThursday -0.02*** (0.001) -0.03*** (0.01) -0.0001

weekdaysFriday 0.02*** (0.001) -0.02** (0.01) -0.03*** (0.01)

weekdaysWednesday -0.005*** (0.001) -0.001 (0.01) 0.002 (0.01)

weekdaysMonday -0.02*** (0.001) -0.03*** (0.01) -0.02** (0.01)

weekdaysSaturday 0.01*** (0.002) -0.07*** (0.01) -0.08*** (0.01)

weekdaysSunday 0.01*** (0.002) -0.08*** (0.01) -0.09*** (0.01)

log(marketGasPrice)group2 -0.43*** (0.15)

log(marketGasPrice)group3 -0.64*** (0.12)

log(marketGasPrice)group4 -0.49*** (0.10)

log(marketGasPrice)group5 -0.28*** (0.09)

Observations 370,392 370,392 370,392
R2 0.78 0.11
Incremental F 121.39
C-D Wald F Stat. 2542.47 118.07
Stock-Yogo Critical Value 16.38 26.87
Kleibergen-Paap LM Stat. 70.04*** 25.16***

HAC standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Appendix A – Additional formulas

Block time

Ethereum adjusts the mining difficulty for every new block according to the following function:

blockTimeb =
miningDifficultyb

networkHashRateb−1

Where miningdifficultyb is the average number of hashes it requires to find a new block and
networkhashrateb−1 is the number of hashes computed per second by all miners while searching
for the previous block.

Mining reward

To incentivize miners to provide their computation service, they are rewarded with a mining reward
for every block they find. This reward consists of a static block reward (at the time of writing, 2
Ether) for finding a new block plus the sum of all gas fees (usually measured in GWei ; 1 Ether
= 109 GWei) paid by all transactions t which a miner includes in this block. Hence, the mining
reward for every block b is:

miningRewardb = 2 +
∑
∀tϵb

gasPricet × gasUsedt
109

Transaction fees

On Ethereum, users only pay for the used gas if the computation is finished before reaching the
limit. Also, only the actually used gas is considered for the block gas limit. Accordingly, the fees
a user has to pay for a transaction t are computed as follows:

transactionFeest =
gasPricet × gasUsedt

109

Appendix B – Descriptive Statistics
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Appendix C – Network-level analysis

In addition to the dApp-level analysis, we created a second data set that aggregates all network
transactions. This additional analysis allows us to estimate network-level demand curves (i.e., one
demand curve for all transactions), compare the demand curves between Ether transfers between
two externally owned accounts and dApp transactions, and estimate a separate demand curve for
every group of dApps by filtering only transactions to a specific group of dApps. Further, it ensures
comparability with other studies that conduct their analysis only on the network level (e.g., Donmez
and Karaivanov 2021, Ilk et al. 2021). The variables we use in this analysis are analogous to the
dApp level data set. Table 4 depicts summary statistics and correlations of this dataset.

Table 4: Descriptive statistics and correlations (network level)

Variables N Mean S.D. 1 2 3 4 5 6 7 8 9 10 11 12

1. gasUsed 1,280 45.42 17.15 1
2. gasUsed group 1 1,280 18.96 18.65 0.88 1
3. gasUsed group 2 1,280 0.39 0.66 -0.5 -0.28 1
4. gasUsed group 3 1,280 2.43 1.77 -0.04 -0.25 -0.23 1
5. gasUsed group 4 1,280 0.86 0.61 -0.09 -0.27 -0.12 0.46 1
6. gasUsed group 5 1,280 0.56 0.53 -0.21 -0.2 0.09 -0.14 -0.42 1
7. marketGasPrice 1,280 6.75 12.29 0.73 0.86 -0.16 -0.33 -0.33 -0.15 1
8. difficultyBomb 1,280 1.08 2.92 -0.48 -0.23 0.25 -0.25 -0.06 -0.05 -0.12 1
9. networkUtilization 1,280 0.83 0.13 0.73 0.53 -0.6 0.01 -0.2 0.03 0.45 -0.18 1
10. EtherPrice 1,280 327.48 218.96 0.1 0.11 -0.04 -0.19 -0.62 0.64 0.13 -0.16 0.27 1
11. EtherVolatility 1,280 0.36 23.46 0.03 0.05 -0.01 0.04 -0.01 0.04 0.05 0.01 0.03 0.07 1
12. gasLimit 1,280 0.01 0.002 0.93 0.9 -0.41 -0.08 -0.02 -0.29 0.75 -0.31 0.53 0.001 0.03 1

The baseline specification for our network level is analogous to our dApp level specification but
without dApp-level fixed effects:

log(gasUsedt) = α0 + α1 log(marketGasPricet) + α2networkUtilizationt+

α3networkUtilization
2
t + α4 log(EtherPricet) + α5 log(EtherVolatilityt)+

α6 log(gasLimitt) + µday of week + µyear + trend + utwhere gas used is the equilibrium gas demand aggregated over all executed transactions on the
network or per group of dApps in the period t (day), µdayofweek denotes the day of week fixed
effects, µyear the year fixed effects, and ut is the error term. We chose a log-log specification for gas
used and market gas price to be able to interpret α1 as the price elasticity of the demand. Due to
the skewed distributions of Ether price, Ether volatility, and the gas limit, we use log-transformed
versions of these variables in our specification. In addition, we also control for the level of network
utilization. This allows us to control for the degree to which miners use the available block gas limit
on a given day and has been used by prior scholars as a measure of network congestion (Donmez
and Karaivanov 2021). We also add a quadratic term to account for the nonlinear relationship
between gas price and network utilization.9

Baseline network-level results

Following the network-level specification, Table 8 reports the results of our 2SLS demand curve
estimation. Column 1 presents the first stage results, where we predict the gas price (log(Market
gas price)) with our IV (difficulty bomb). Column 2 presents the second stage results, where we use

9We also compute the same model with a threshold specification where we added only the linear term and dummy
variable that takes on the value one if the utilization level exceeds 90%. The were qualitatively the same regarding
the magnitude and significance of the coefficients we obtained.
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the predicted gas price to estimate the price elasticity of the gas demand (log(Gas used)). Finally,
column 3 provides an OLS model for comparison.

Table 5: 2SLS model with 1st and 2nd stage and OLS benchmark (network level)

(1) (2) (3)
2SLS 1st stage 2SLS 2nd stage OLS

log(marketGasPrice) log(gasUsed) log(gasUsed)

difficultyBomb 0.10*** (0.02)

log(marketGasPrice) -0.69*** (0.16) -0.04** (0.02)

networkUtilization -3.03*** (0.35) -1.58*** (0.43) 0.20 (0.19)

networkUtilization2 17.51*** (1.85) 10.38*** (2.60) -0.33 (0.87)

log(EtherPrice) 0.09 (0.13) 0.06 (0.08) 0.12** (0.05)

log(EtherV olatility -0.02 (0.02) -0.01 (0.01) 0.001 (0.003)

log(GasLimit) 3.08*** (1.11) 3.02*** (0.99) 0.53* (0.28)

DThursday -0.04 (0.03) -0.03 (0.02) -0.001 (0.002)

DFriday 0.01 (0.03) 0.005 (0.02) -0.001 (0.003)

DWednesday -0.02 (0.02) -0.01 (0.02) 0.0002 (0.002)

DMonday -0.05 (0.03) -0.03 (0.02) -0.00004

DSaturday -0.02 (0.04) -0.01 (0.02) -0.01 (0.01)

DSunday -0.03 (0.04) -0.02 (0.02) -0.01 (0.01)

D2018 -1.21*** (0.20) -0.85*** (0.26) 0.13 (0.19)

D2019 -1.61*** (0.29) -1.11*** (0.30) -0.005 (0.24)

D2020 -1.30** (0.62) -0.90** (0.40) -0.03 (0.27)

Trend 0.001 (0.001) 0.001* (0.0005) 0.001*** (0.0003)

Constant -13.30 (18.66) -2.97 (12.00) -7.81 (6.25)

Observations 1,279 1,279 1,279
R2 0.79 0.94
F Statistic (df = 16; 1262) 305.20*** 1,220.08***
C-D Wald F Stat. 85.06
Stock-Yogo Critical Value 16.38
Kleibergen-Paap LM Stat. 4.18**

Note: Heteroskedastic and autocorrelation consistent (HAC)
standard errors are shown in parentheses,
where the optimal bandwidth (23) is calculated
following Newey and West (1987).

Signif. Codes:
**: 0.01, **: 0.05, *: 0.1

To establish robustness, we ran a series of alternative models of the network-level analysis
similar to the robustness checks reported in the main paper. Table 6 reports the results of these
robustness checks.
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Table 6: Robustness checks

(1) (2) (3) (4) (5) (6) (7) (8)

Baseline
Alternative
Dependent

variable

Alternative market
gas price (25th

percentile)

Alternative market
gas price (average

gas price)

Alternative market
gas price (normalized by

ETH supply)

Alternative instrument
(block difference)

Outliers (5th-95th
percentile gas used)

Subsample (specific
difficulty

bomb period)

log(gasUsed) log(txnCount) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed)

log(marketGasPrice) -0.69*** (0.16) -0.63*** (0.15) -0.80*** (0.20) -1.83** (0.61) -0.57** (0.24) - -0.75** (0.24) -0.69** (0.19) -2.70 (2.85)

Observations 1,279 1,279 1,279 1,279 1,279 1,279 1,279 101

HAC standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Differing Demand Curves per Group

In addition to estimating a demand curve for all transactions on Ethereum, we also estimate a
specific demand curve for every group of dApps along with their confidence intervals. Table 11
reports the second stage result of this estimation. Each of these models uses the aggregated daily
gas used by all dApps within the respective group as the dependent variable. Columns 2-6 depict
that the coefficients of log(Market gas price) significantly vary between the groups of dApps and
thus signal that the groups differ regarding their sensitivity to changes in the gas price.

Table 7: 2SLS model with 1st and 2nd stage and OLS benchmark (network level)

(1) (2) (3) (4) (5) (6)
2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage

log(gasUsedbyalldApps) log(gasUsedbygroup1) log(gasUsedbygroup2) log(gasUsedbygroup3) log(gasUsedbygroup4) log(gasUsedbygroup5)

log(marketGasPrice) -0.45*** (0.14) -0.0464 0.09 (0.19) -2.09*** (0.63) -0.59*** (0.13) -0.48*** (0.17)

networkUtilization -1.04*** (0.36) -0.27 (0.41) -0.84 (0.61) -2.37 (1.67) -0.4368 -1.05** (0.51)

networkUtilization2 6.61*** (2.25) 2.51 (2.58) 2.89 (3.60) 17.04* (10.24) 5.44* (2.81) 7.20** (3.04)

log(EtherPrice) 0.20** (0.08) 0.39*** (0.08) 0.03 (0.09) -0.02 (0.23) -0.93*** (0.09) 0.37*** (0.10)

log(EtherV olatility) -0.0000 (0.01) 0.01 (0.01) -0.02 (0.02) -0.005 (0.03) 0.02 (0.02) -0.02 (0.01)

log(gasLimit) 2.49*** (0.92) 1.56 (1.05) -0.75 (1.07) 7.61*** (2.28) 1.88** (0.86) 2.68*** (0.91)

DThursday -0.03 (0.02) -0.02 (0.02) 0.02 (0.04) -0.12 (0.08) -0.0015 -0.09** (0.04)

DFriday 0.01 (0.02) 0.01 (0.02) -0.04 (0.04) 0.03 (0.07) -0.02 (0.03) -0.13*** (0.04)

DWednesday -0.002 (0.02) 0.004 (0.01) -0.02 (0.03) -0.06 (0.05) -0.03 (0.02) -0.0024

DMonday -0.02 (0.02) -0.01 (0.02) -0.03 (0.04) -0.10 (0.07) -0.06** (0.03) -0.12*** (0.03)

DSaturday -0.04 (0.03) -0.07*** (0.03) -0.09** (0.04) 0.13* (0.07) -0.0018 -0.13*** (0.05)

DSunday -0.04 (0.02) -0.08*** (0.02) -0.004 0.14* (0.07) -0.07** (0.03) -0.13*** (0.05)

D2018 -1.25*** (0.28) -1.36*** (0.35) -0.26 (0.31) -1.29 (1.15) -0.66** (0.28) -0.23 (0.30)

D2019 -1.53*** (0.32) -1.80*** (0.40) -0.23 (0.38) -1.69 (1.43) -0.41 (0.35) 0.22 (0.38)

D2020 -1.35*** (0.38) -1.61*** (0.42) -0.29 (0.44) -1.90 (1.35) -0.34 (0.40) 1.37*** (0.42)

Trend 0.002*** (0.0004) 0.003*** (0.0005) -0.001** (0.001) 0.002 (0.001) 0.0004 (0.001) -0.003*** (0.001)

Constant -0.03 (10.36) -18.54 (12.14) 35.66** (14.67) 16.61 (30.89) 24.97* (13.23) 83.40*** (12.13)

Observations 1,279

C-D Wald F Stat. 85.06

Stock-Yogo Critical Value 16.38

Kleibergen-Paap LM Stat. 4.19**

Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in parentheses,
where the optimal bandwidth (23) is calculated following Newey and West (1987).
All models use the first-stage regression reported in Table 8.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

To compare the different gas price elasticities, we also compute their 95 percent confidence
intervals. Figure 3 depicts these intervals and shows that not all elasticities can be distinguished
with enough confidence, but some significant differences are still noticeable. Especially games
and marketplaces (group 3) seem to be far more sensitive to changes in gas prices than dApps in
group 1 and group 2. Considering that group 3 mainly comprises collectible games, such as crypto
kitties, where the timing of the transaction does not matter as much as, for example, finance or
cryptocurrency exchange dApps, where the timing often matters due to swift changes in prices
of cryptocurrencies, this result seems plausible. Further, the one-time nature and relatively high
transaction values in group 2 (identify and property dApps) can explain why users are relatively
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insensitive to changes in the gas price.

Figure 3: Price elasticities of demand per group of dApps
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Appendix D – Supplementary survival analysis

To investigate the impact of Ethereum’s transaction validation mechanism on platform comple-
ments’ heterogeneity, we examine our explanatory variables’ simultaneous effect on the overall
hazard-rate function by using the semi-parametric Cox proportional-hazards regression analysis
(Cox 1972). Previous scholars have used Cox-proportional hazard models to study market exit
or entry (e.g., Agarwal and Gort 2002, Huang et al. 2013). In our benchmark specification, we
estimate the hazard of dApp d leaving the market on day t as:

hdt = ho(t)exp{β
′
xxt}

Where h0(t) is the baseline hazard, xtis a vector of explanatory and control variables pertaining
to time t. With this model, we are not interested in predicting the exit time but the effect of
gas price as a time-dependent covariate. For the analysis, we cluster the standard errors on the
dApp level to control for heteroskedasticity and nonindependence of observations. Further, we
stratify our observations by the group of the dApp. This allows us to account for different baseline
hazard rates between the groups of dApps. To measure market exit, we leverage the fact that
stateofthedapps.com reports the status of dApps and classifies discontinued dApps as “abandoned.”
For the exact timing of the market exit, we take the date of the last transaction a dApp has received.
Table ?? reports the results of our analysis. Column 1 shows our benchmark specification. Column
2 depicts the gas price interacted with the group of the dApp.

Table 8: 2SLS model with 1st and 2nd stage and OLS benchmark (network level)

(1) (2)
all dApps all dApps

stratified by group stratified by group

log(MarketgasPrice) 0.02 (0.09) -0.187

log(MarketgasPrice) × group2 0.49** (0.23)

log(MarketgasPrice) × group3 0.15 (0.10)

log(MarketgasPrice) × group4 0.21** (0.09)

log(MarketgasPrice) × group5 0.22* (0.12)

networkUtilization -6.68 (8.24) -6.89 (8.18)

networkUtilization2 4.01 (5.32) 4.15 (5.28)

log(EtherPrice) -0.04 (0.14) -0.02 (0.14)

log(EtherV olatility) 0.01 (0.04) 0.01 (0.04)

log(gasLimit) 1.07 (0.71) 1.11 (0.71)

Year of entry dummies YES YES

Observations 783,619 783,619

Market exit events 399 3991

Log-likelihood -2,088.39 -2,083.79

Note: Robust standard errors are clustered at the group level and reported in parentheses.
Hazard ratios can be calculated by exponentiating the coefficients reported for each variable.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Our benchmark specification shows no significant impact of the gas price on the survival of a
dApp. However, after interacting the gas price with the group of a dApp (Column 2), we find
that a 10% increase in the Market price (∼0.095 increase in log(Market price) is associated with a
reduction of the hazard rate ( β = -1.7; hazard rate = exp(0.095×-1.7) = 0.851) by around 16.9%
for our base category (group 1, finance dApps). The positive and (except for group 3) significant
interactions indicate that all other groups of dApps profit less from a higher gas price and face a
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higher likelihood of market exit. For instance, for group 2, the hazard rate decrease only equals
10.9% (exp((-1.7 + 0.49) ×0.095)=0.891).

The results of our hazard model suggest that an increase in the market gas price reduces the
likelihood of a market exit on a given day, but groups differ significantly regarding this effect.
Especially when considering that the gas price fluctuates quickly and sometimes doubles or even
triples within a month (e.g., January 2018, June 2020 at the start of the Defi hype), these results
can be of economic significance. Further, the result seems plausible as an increase in the gas price
is typically the consequence of increased demand for gas caused by more transaction activity with
dApps. Again, however, we can see that dApps from group one benefit more from this effect than
other dApps and thus have an overall higher likelihood of staying in this market. This differentiating
effect is problematic as it corroborates our main argument by showing that a market for transactions
disproportionately favors a specific type of dApps and thus leads to a long-run reduction of the
heterogeneity of dApps offered on the Ethereum platform.
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