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Abstract

In 1963, Debreu and Scarf were at last able to prove Edgeworth’s con-
jecture that the core of an exchange economy converges to the competitive
equilibria as the number of traders gets large. Unfortunately, Muench(1973)
demonstrated that this result can not be generalized to a public goods econ-
omy This is due to the increasing returns to coalitional size that are embedded
in the public goods technology. The purpose of this paper is to investigate
the conditions under which core convergence can be regained when public
goods are present. It is shown that if all consumers become asymptotically
satiated in public good, then the core of a replication economy converges to
the set Lindahl equilibria. Asymptotic satiation means that the value to con-
sumers, in terms of private goods, of receiving some multiple of their current
level of public goods consumption goes to zero as the level goes to infinity.
This assumption is trivially implied if consumers become satiated in public
good. It is also shown that strict non-satiation, which is almost the inverse
of asymptotic satiation, is a sufficient condition for core convergence. Strict
non-satiation mean that consumers’ marginal rates of substitution of public
for private goods is strictly bounded from zero. Finally sufficient conditions
for core non-convergence are investigated.



1. Introduction

In 1963, Debreu and Scarf proved Edgeworth’s conjecture that the core of an

exchange economy converges to the set of competitive equilibrium allocations as the

number of traders gets large. It would be quite surprising, of course, to observe an

allocation that is not in the core as an equilibrium outcome of any game. This includes

the one induced by an exchange economy, or any other economy. Such an outcome

would violate the basic economic hypothesis that agents always do as well as they can

given their constraints. Thus the knowledge that the competitive allocations are in fact

the only ones that remain in the core as the economy gets large is of great practical

importance. It confirms the central position of competitive equilibrium in economic

theory, and provides a justification for the study of such subjects as comparative statics,

stability, and computable general equilibrium.

It is natural to wonder whether or not this result can be generalized to an economy

with public goods. Here the question becomes: Does the core of a public goods economy

converge to the set Lindahl equilibrium allocations. 1 Muench (1973) was able to

demonstrate that such a generalization is not possible. He provided a simple example

with a continuum of identical consumers in which the core contains many allocations

while the Lindahl equilibrium is unique. The increasing returns to coalitional size that

are embedded in the public goods technology are at the root of his result. In essence,

the presence of public goods causes the game generated by the economy to be highly

super-additive, which in turn causes the core to be large. This calls into question the

value of paying the same careful attention to Lindahl equilibrium that has be given to

competitive equilibrium.

The main purpose of this paper is to investigate the conditions under which core

convergence can be regained when public goods are present. The question is addressed

using a replica, instead of a continuum economy. This is because it is difficult to

interpret allocations in a public goods economy with a continuum of consumers. For

1 The Lindahl equilibrium is the natural analog of competitive equilibria for a public goods economy.
See Samuelson (1954), and Foley (1970) among others.

1



example, if there is any measurable level of public goods in an allocation, then the

ratio of public to private goods consumption for all consumers is infinity. How does

one compare two such allocations. After all, infinity is infinity. Is it meaningful to

say that consumers prefer a larger infinity of public goods to a smaller one? On the

other hand, it is fundamentally impossible to distinguish between allocations in which

the public goods level is unmeasurable (almost zero). For such allocations the ratio of

public to private goods consumption for each consumer could be bounded, or undefined.

Differentiating these two cases is important, and only possible in a finite economy.

The most important result presented in this paper is that the core of a replica

economy with technology that exhibits constant returns to scale, and consumers who

have convex, continuous, and monotonic preferences, converges to the set of Lindahl

equilibrium allocations if all agents become asymptotically satiated in public goods. An

agent’s preferences are said to exhibit asymptotic satiation if the value to the agent, in

terms of private good, of receiving some multiple of his current public goods consump-

tion level goes to zero as the level of public good goes to infinity.

This does not seem to be a terribly unreasonable assumption to make about agents’

preferences for many kinds of public goods. For example, if an agent had ten channels

on his cable system, he might be willing to pay a lot for ten more. But if he already had

one hundred, would he care that much about another hundred? Certainly, if he already

had one thousand, adding another thousand would hardly improve his welfare at all.

Or take a public park as an example. While a larger park is always better, an agent

would probably care less and less about each successive doubling of the park’s size.

Eventually, the park gets so big that the agent can never hope to see the whole thing

in any event. Obviously, asymptotic satiation is trivially satisfied if agents actually

become satiated in public goods.

It is also shown that strict non-satiation in public goods is a sufficient condition for

core convergence. A consumer’s preferences are said to exhibit strict non-satiation if

the desire for public goods is so strong that the marginal rate of substitution of public

for private goods is everywhere strictly bounded from zero. For example, if public and
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private goods are perfect substitutes, the assumption is satisfied.

Strict non-satiation is a much less realistic assumption than asymptotic satiation.

In particular, it implies that almost all the private good is devoted to public goods

production for every allocation in the core of a sufficiently large economy. Empirically,

this does not seem to be a very common situation. One reason that the implications

of this assumption are considered is that it is that strict non-satiation is essentially the

polar opposite of asymptotic satiation. It is therefore of some theoretical interest to

note that despite this, both assumptions imply core convergence.

A more important reason for its inclusion becomes evident when the problem of

sufficient conditions for core non-convergence is taken up in section four. These suf-

ficient conditions turn out to be almost, but not quite, the negation of asymptotic

satiation and strict non-satiation. Whether or not the gap between economies for with

the core can be shown to converge and not to converge can be completely closed is an

open question. While section four shows that the gap is narrow, it falls short of giving

necessary and sufficient conditions for core convergence. However, this section does

allow the conclusion that there is no hope of proving a general core convergence theo-

rem for a public goods economy. If fact, non-convergence seems to be more common,

perhaps even generic, for such economies.

2. The Model

A simple replica economy, ER, with T types of consumers indexed by t ∈ T ≡

{1, . . . , T}, and R consumers of each type indexed by r ∈ R ≡ {1, . . . , R}, is considered.

Each consumer type has complete and transitive preferences �t defined over X ≡

<M+1
+ , a one private good, M public good consumption set where public goods are

indexed by m ∈ M ≡ {1, . . . ,M}. A typical consumption bundle in X will be written

(x; y) where x is a level of private good, and y is a vector of public goods. Agents will

typically be referred to by their number and type. Thus {r, t} is agent number r of
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type t. Superscripts are used to represent agents and subscripts to represent types of

public goods. Superscripts and subscripts will also sometimes be used to distinguish

different vectors of goods from one another, but this will be done a way that prevents

confusion.

The following assumptions are made on �t for all t ∈ T .

A1) �t is continuous.

A2) If (x; y) �t (x′; y′), then for all λ ∈ [0, 1], λ(x, y) + (1− λ)(x′; y′) �t (x′; y′).

(Weak convexity)

A3) If (x; y) ≥ (x′; y′), then2 (x; y) �t (x′; y′); also, if x > x′, and y ≥ y′, then

(x; y) �t (x′; y′).

(Monotonicity in all goods, and strict monotonicity in the private good)

Define the K dimensional simplex ∆K as:

∆K ≡

{
p ∈ <K+1

+

∣∣∣∣ K+1∑
i=1

pi = 1

}
. (1)

Note that monotonicity implies that all prices are non-negative, and in addition, the

price of the private good is positive.

Let Y ⊂ <− × <M+ denote the production set. A typical feasible production plan is

written (z; y) where z is a negative number which is interpreted as the input of private

good, and y is a positive output vector of public goods. Define the marginal cost

correspondence for Y, MC : Y → ∆M , as follows:

MC(z; y) ≡
{

(p; q) ∈ ∆M | (p; q)(z; y) ≥ (p; q)(z′; y′) ∀ (z′; y′) ∈ Y
}
. (2)

The production set is assumed to satisfy:

B1) Y is a closed convex cone.

B2) Y ∩RM+1
+ = {0}.

2 The three kinds of vector inequalities are represented by ≥, >, and �.
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B3) There exists φ > 0 such that for all m ∈ M, all (z; y) ∈ Y , and all (p; q) ∈

MC(z; y), qm/p ≤ φ.

Finally, one assumption is made on the ωt for all t ∈ T :

C1) ωt > 0.

Let GR denote the grand coalition for the economy ER. A Lindahl equilibrium for

a coalition S ⊆ GR is a vector (x; y; p; q) ∈ < | S |+ ×<M+ ×∆ | S |M , such that:

∀ {r, t} ∈ S, (p; qr,t)(xr,t; y) ≤ pωt (A),

(xr,t; y) �t (x̂; ŷ) ∀ (x̂; ŷ) ∈ X s.t. (p; qr,t)(x̂; ŷ) ≤ pωt. (B)( ∑
{r,t}∈S

(xr,t − ωt); y
)
∈ Y. (C)

and

∀ (ẑ; ŷ) ∈ Y,p; ∑
{r,t}∈S

qr,t

 ∑
{r,t}∈S

[xr,t − ωt]; y

 ≥
p; ∑

{r,t}∈S

qr,t

 (ẑ; ŷ) . (D)

Now define the set of Lindahl allocations for a coalition S ⊆ GR as:

L(S) ≡
{

(x; y) ∈ < | S |+ ×<M+ | (3)

∃ (p; q) ∈ ∆ | S |M s.t. (x; y; p; q) is a Lindahl equilibrium for S S
}

The separating price correspondence for �t, Ht : X → ∆M is defined as:

Ht(x; y) ≡
{

(p; q) ∈ ∆M | (4)

(p; q)(x; y) < (p; q)(x′; y′) ∀ (x′; y′) ∈ X s.t. (x′; y′) �t (x; y)} .

Note that the range of Ht is ∆M . This means that the prices given by Ht cannot be

the same prices faced by the agent at a Lindahl equilibrium for a coalition S since these
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prices are elements of ∆ | S |M . However, if (x; y) is a Lindahl allocation, then there

must exist normalization factors kr,t ∈ (0, 1] for each agent that can be used to put the

prices back into the ∆ | S |M . This normalization is described in detail below.

An allocation (x; y) for a coalition S is said to be S-optimal if it is feasible for S,

and there does not exist a feasible Pareto dominant allocation (x̃; ỹ) for S. Formally,

(x; y) is S-optimal if  ∑
{r,t}∈S

[
xr,t − ωt

]
; y

 ∈ Y,
6 ∃ (x̃; ỹ) ∈ < | S |+ ×<M+ s.t.

 ∑
{r,t}∈S

[
x̃r,t − ωt

]
; ỹ

 ∈ Y,
∀ {r, t} ∈ S, (x̃r,t; ỹ) �t (xr,t; y),

and

∃ {r, t} ∈ S s.t. (x̃r,t; ỹ) �t (xr,t; y).

It will frequently be convenient to take advantage of the fact that the well known

Samuelson conditions must be satisfied by any S-optimal allocation. This may be

stated in the notation of this paper in the following way. If an allocation (x; y) for a

coalition S ∈ GR is S-optimal, then

∀ {r, t}, {r′, t′} ∈ S, ∃ (pr,t; qr,t) ∈ H(xr,t; y), ∃ (pr
′,t′ ; qr

′,t′) ∈ H(xr
′,t′ ; y),

and ∃ kr,t, kr
′,t′ ∈ (0, 1] s.t. kr,t × pr,t = kr

′,t′ × pr
′,t′ ≡ p,

(p; . . . , kr,t × qr,t, . . . , kr
′,t′ × qr

′,t′ . . . , ) ∈ ∆ | S |M ,

and

∃ (p̃ : q̃) ∈MC

 ∑
{r,t}∈GR

[xr,t − ωt]; y

 s.t. ∀ m ∈M,
∑
{r,t}∈S

qr,tm
pr,t

=
q̃m
p̃m

.

Note that the normalization factor cancels out in the last line.

The offer correspondence, OCt : RM
+ → <+, is defined as follows:

OCt(y) =
{
x ∈ <+ | ∃ (p; q) ∈ ∆M s.t. (5)
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(p; q)(x; y) ≤ pωt and (x; y) �t (x′; y′) ∀ (x′; y′) ∈ X s.t. (p; q)(x′; y′) ≤ pωt
}

The graph of this correspondence is the offer curve for an agent of type t. The reader

may verify that x ∈ OCt(y) if and only if for some (p; q) ∈ Ht(x; y), (p; q)(x; y) = pωt.3

An allocation (x; y) is in the core for the grand coalition GR if, ∑
{r,t}∈GR

[
xr,t − ωt

]
; y

 ∈ Y,

6 ∃ S ⊆ GR, and (x̃; ỹ) ∈ < | S |+ ×<M+ s.t.

 ∑
{r,t}∈S

[
x̃r,t − ωt

]
; ỹ

 ∈ Y,
and

∀ {r, t} ∈ S, (x̃r,t; ỹ) �t (xr,t; y),

and in addition:

∃ {r, t} ∈ S s.t. (x̃r,t; ỹ) �t (xr,t; y).

This is just the usual requirement that no coalition can block any core allocation. Notice

that blocking coalitions can only consume the public goods produced using their own

resources. They cannot free ride off the public goods produced by the rest of the agents.

This follows Foley and others. The set of core allocations for the grand coalition GR

will be denoted by C(GR).

In order to be assured that Lindahl equilibria exist, and are in the core, we will

take advantage of Foley’s (1970) method of modeling public goods as jointly produced

private goods. If it can be shown that competitive equilibria exist, and are in the

core for the associated private goods economy, then it may be concluded that Lindahl

equilibria exist and are in the core of the original public goods economy. But it is then

easy to verify that A1-A3, B1-B3 and C1 imply all of the assumptions used by McKenzie

(1981) to show existence. Milleron’s (1972) theorem 4.1 may then be used to conclude

that the Lindahl equilibrium is always in the core. The exercise of explicitly carrying

3 Also see equation 8 below
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out the translation of this model into a private goods economy is not performed here

because it is long, and it would essentially be a duplication of Foley’s contribution.

In lemma 1, a useful relationship between the core, agent’s offer curves and the

Lindahl equilibria is shown.

Lemma 1. Let ER satisfy A1-A3, B1-B3 and C1. If (x; y) ∈ C(GR), and for all

{r, t} ∈ R× T , xr,t ∈ OCt(y), then (x; y) ∈ L(GR).

Proof/

1. If ∀ {r, t} ∈ R × T , xr,t ∈ OCt(y), then by the definitions of Ht and OCt

∀ (r, t) ∈ R× T , ∃ (pr,t; qr,t) ∈ Ht(xr,t; y) such that:

(pr,t; qr,t)(xr,t; y) ≤ pωt

and

(xr,t; y) �t (x′; y′) ∀ (x′; y′) ∈ X s.t. (pr,t; qr,t)(x′; y′) ≤ pr,tωt.

2. Also, since core allocations are feasible by definition, ∑
{r,t}∈GR

(xr,t − ωt); y

 ∈ Y.
3. Finally, suppose

∀ {r, t} ∈ GR, and ∀ (pr,t; qr,t) ∈ ∆M s.t. :

a. (pr,t; qr,t) ∈ Ht(xr,t; y),

b. (pr,tqr,t)(xr,t; y) ≤ pr,tωt,

c. (xr,t; y) �t (x′; y′) ∀ (x̂; ŷ) ∈ X, s.t. (pr,t; qr,t)(x̂; ŷ) ≤ pr,tωt, it is not the case

that

∃ (pr,t; qr,t) ∈ H(xr,t; y), ∃ (pr
′,t′ ; qr

′,t′) ∈ H(xr
′,t′ ; y), ∃ kr,t ∈ (0, 1] and ∃ p |

kr,t × pr,t = p and (p; k1,1 × q1,1, . . . , kR,T × qR,T ) ∈ ∆ | S |M ,
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and,

∀ (ẑ; ŷ) ∈ Y,p; ∑
{r,t}∈GR

qr,t

 ∑
{r,t}∈GR

[xr,t − ωt]; y

 ≥
p; ∑

{r,t}∈GR
qr,t

 (ẑ; ŷ) .

But this would violate the Samuelson conditions. This in turn contradicts the

hypothesis that (x; y) ∈ C(GR) and is therefore Pareto optimal.

The core is said to converge if the condition of lemma 1 is approximately satisfied

in a way which becomes more exact as the economy grows without bound. A sequence

of core allocations {(xR; yR)}, where for all R, (xR; yR) ∈ C(GR), is said to “ε-close”

to the Lindahl allocations, if only a vanishing proportion of the agents in GR remain off

their offer curves by at least ε as R grows without bound. Define the coalition S(ε, x; y)

to be the set of agents who are off there offer curves by ε at the allocation (x; y).

S(ε, x; y) ≡
{
{r, t} ∈ GR if ∀ x̃r,t ∈ OCt(y), xr,t ≥ x̃r,t + ε, or xr,t ≤ x̃r,t − ε

}
. (6)

Then let the function NOC : <+ × <RT+ × <M+ → [0, 1], give the proportion of

displaced agents in ER.

NOC(ε, x; y) ≡ | S(ε, x; y) |
RT

. (7)

The core is said to converge to the set of Lindahl allocations if for any sequence of

core allocations {(xR; yR)}, and for any ε > 0,

lim
R→∞

NOC(ε, xR; yR) = 0.

In words, the core is said to converge to the set of Lindahl equilibria if for every

allocation in the core of a sufficiently large economy, only a vanishingly small proportion

of agents pay anything even slightly different from their Lindahl tax for whatever Pareto

optimal quantity of public goods is produced by the grand coalition.
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It is essential to the lemmas in sections three and four that the correspondence OCt

be well defined. The purpose of lemmas 2 through 6 is to show that under assumptions

A1-A3 and C1, OCt(y) 6= ∅ for any y ∈ RM
+

Lemma 2. Let �t satisfy A1-A3. Then for all (x; y) ∈ X, Ht(x, y) 6= ∅.

Proof/

Consider the upper contour set of (x; y) ∈ X for �t:

U t(x; y) ≡ {(x′; y′) ∈ X | (x′; y′) �t (x; y)}.

By A1-A3, U t(x; y) 6= ∅ and is also closed and convex. Then by the Hahn-Banach

theorem, for all (x; y) ∈ X,

∃ (p; q) ∈ Ht(x, y).

Lemma 3. Let �t satisfy A1-A3. Then Ht is an UHC correspondence.

Proof/

Let {(xν ; yν)} be a convergent sequence in X, let limν→∞, (x
ν ; yν) = (x̃; ỹ), and let

(pν ; qν) ∈ Ht(xν ; yν) for all ν. Note that (pν ; qν) exists by lemma 2, and since (pν ; qν) ∈

∆M for all ν, there exists a subsequence {(pν′ ; qν′)} such that limν′→∞(pν
′
; qν

′
) =

(p̃; q̃) ∈ ∆M . It must be shown that

(p̃; q̃)(x̃; ỹ) < (p̃; q̃)(x′; y′) ∀ (x′; y′) ∈ X s.t. (x′; y′) �t (x̃; ỹ).

Suppose not, then

∃ (x′; y′) ∈ X s.t. (x′; y′) �t (x̃; ỹ)

and

(p̃; q̃)(x̃; ỹ) ≥ (p̃; q̃)(x′; y′).

By continuity of preferences,

∃ ε > 0 s.t. (x′ − ε; y′) �t (x̃; ỹ)
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and (p̃; q̃)(x̃; ỹ) > (p̃; q̃)(x′ − ε; y′).

But then by continuity of preferences, for sufficiently large ν′,

(x′ − ε; y′) �t (xν
′
; yν

′
).

By the definition of Ht, for sufficiently large ν′,

(pν
′
; qν

′
)(xν

′
; yν

′
) < (pν

′
; qν

′
)(x′ − ε; y′).

But,

(pν
′
; qν

′
)→ (p̃; q̃), and (xν

′
; yν

′
)→ (x̃; ỹ)

so

(p̃; q̃)(x̃; ỹ) ≤ (p̃; q̃)(x′ − ε; y′),

a contradiction.

Lemma 4. Let �t satisfy A1-A3. Then Ht is convex-valued.

Proof/

Suppose not. Then

∃ (x; y) ∈ X, ∃ (p; q), (p′; q′) ∈ Ht(x; y) and ∃ λ ∈ [0, 1] s.t.

λ(p; q) + (1− λ)(p′; q′) ≡ (p′′; q′′) 6∈ Ht(x; y).

Then,

∃ (x̃; ỹ) ∈ X s.t. (x̃; ỹ) �t (x; y) and (p′′; q′′)(x; y) ≥ (p′′; q′′)(x̃; ỹ),

which implies,

λ {(p; q) [(x; y)− (x̃; ỹ)]}+ (1− λ) {(p′; q′) [(x; y)− (x̃; ỹ)]} ≥ 0.
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This, however, is impossible since

(p; q) ∈ Ht(x; y) and (p′; q′) ∈ Ht(x; y).

Now define the map f ty : [0, ωt] ⊂ <+ → < by:

f ty(x) ≡ {γ ∈ < | ∃ (p; q) ∈ Ht(x; y) and γ = (p; q)(x− ωt; y)}. (8)

This correspondence f ty gives the values of excess demand at each of the prices sup-

porting (x; y). More exactly, it is the differences between the possible values of the

endowment that an agent of type t would have to have, and the value of the one he

actually has, if (x; y) were to be on his offer curve. Thus, for a particular value of y, if

0 ∈ f ty(x), then (x; y) is on the offer curve of agent of type t.

Lemma 5. 4 Under assumptions A1-A3 and C1, for all (ωt; y) ∈ X, there exists

x ∈ [0, ωt] such that 0 ∈ f ty(x).

Proof/

Clearly f ty is UHC, convex-valued, and non-empty valued since it is the product of

correspondences with these properties. Consider the following subsets of the domain:

D+ ≡ {x ∈ [0, ωt] | ∃ z ∈ f ty(x) and z ≥ 0}

D− ≡ {x ∈ [0, ωt] | ∃ z ∈ f ty(x) and z ≤ 0}

1. Note first that D− 6= ∅. Let (p; q) ∈ Ht(0; y). Then

∀ (x′; y′) ∈ X s.t. (x′; y′) �t (0; y), (p; q)(0; y) < (p; q)(x′; y′).

Then, since qy < px′ + qy′,

∀ λ ∈ (0, 1], λqy < λpx′ + λqy′.
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Then since

λp < p+ (1− λ)(1− p)

λqy < (p+ (1− λ)(1− p))x′ + λqy′.

But,

p+ (1− λ)(1− p) + λ
M∑
i=1

qi = p+ (1− λ)(1− p) + λ(1− p) = 1.

Therefore,

(p+ (1− λ(1− p);λq) ∈ Ht(0; y).

However,by strict monotonicity of preferences in the private good, p > 0, and so

lim
λ→∞

p+ (1− λ)1− p) = 1.

But by assumption C1, ωt > 0. It follows that for small enough λ,

(p+ (1− λ)(1− p))(0− ωt) + λqy ≤ 0.

Thus 0 ∈ D−, and so D− 6= ∅.

2. Also note that D+ 6= ∅. By monotonicity of preferences,

∀ (x; y) ∈ X and ∀ (p; q) ∈ Ht(x; y), (p; q) > 0.

So

p(ωt − ωt) + qy ≥ 0.

Thus ωt ∈ D+, and so D+ 6= ∅.

3. Finally note that 0 6∈ f ty(x) x ∈ [0, ωt] implies D+∩ D− = ∅. This follows from

the fact that f ty is convex-valued which implies that for any x ∈ [0, ωt], if x ∈ D+

and x ∈ D−, then 0 ∈ f ty(x).

4. It only remains to show that D+ ∩ D− 6= ∅. Suppose not. Then since both sets

are non-empty, at most one of them can be closed. Without loss of generality,

suppose D+ is not closed. Then there exists a sequence, {xν}, in D+ such that
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xν → x, 0 ≤ f ty(xν) and 0 > f ty(x). But this contradicts the UHC of f ty on [0, ωt].

Therefore, there is some x ∈ RN
+ such that 0 ∈ f ty(x).

Lemma 6. For all y ∈ RM
+ , OC

t(y) 6= ∅.

Proof/

From lemma 5,

∀ (ωt; y) ∈ X, ∃ x ∈ [0, ωt] s.t. 0 ∈ f ty(x).

But then

∃ (p; q) ∈ Ht(x; y) s.t. (p; q)(x− ωt; y) = 0.

Therefore, by definition of Ht :

∃ (p; q) ∈ Ht(x; y) s.t. (p; q)(x; y) ≤ pωt

and

∀ (x′; y′) ∈ X s.t. (x′; y′) �t (x; y), (p; q)(x′; y′) > pωt.

Thus x ∈ OCt(y)

3. Two Convergence Theorems

Two separate convergence theorems are proved in this section. The first shows that

if for all agents, the value in terms of private good of receiving a given multiple of their

current public goods consumption level goes to zero as the level of public goods goes

to infinity, then the core converges to the set of Lindahl allocations. This assumption

is called asymptotic satiation, and it is easy to see why it drives the result.
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The reason that the core of a public goods economy is typically quite large is

that the grand coalition is able to spread the costs of public goods production more

widely than any subcoalition. As a consequence, subcoalitions find it difficult to block

allocations offered by the grand coalition even when all the agents in the subcoalition

are charged more than their Lindahl taxes. The larger bundle of public goods that the

grand coalition is able to offer can compensate agents for substantial losses in private

good consumption. But if all agents become asymptotically satiated in public good,

then this ceases to be true. Now agents do not care very much about extremely high

levels of public goods consumption. This puts a limit on the degree to which the

grand coalition can “exploit” its cost advantage. Suppose, for example, that the grand

coalition tried to give even a small proportion of the agents an level of private good

consumption that was less than the level at a Lindahl allocation. As the economy got

large, the members of the subcoalition would find that they are sufficiently numerous

that they could easily produce a bundle of public goods that is almost as good as the one

offered by the grand coalition. The subcoalition would then be able to block the effort to

give less private good than they would get at a Lindahl allocation. In short, asymptotic

satiation removes the increasing returns to coalitional size that are embedded in the

public goods technology. As a result, even small coalitions are able to block attempts

on the part of the grand coalition to deviate from the Lindahl allocations.

Before giving a formal definition of asymptotic satiation, consider the notion of

compensating variation. This will be used to measure the difference in desirability

between two given bundles of public and private goods. Specifically, the compensating

variation is the largest amount of the private good that could be taken away from

bundle 2 while still leaving the agent at least as well off at bundle 1. The compensating

variation can be positive or negative. It is always well defined if it is non-negative (or

equivalently, the second bundle is better than the first). Formally, for an agent of type

t:

CV t(x; y;x′; y′) ≡ {max z ∈ R | (x; y) �t (x′ − z; y′)} . (9)
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Now asymptotic satiation can be defined as follows:

A4) ∀ x ∈ <+, ∀ σ ∈ (0, 1], and ∀ t ∈ T , lim ‖ y ‖ →∞ CV t(x;σy;x; y) = 0.

Examples of preferences that satisfy asymptotic satiation include those for which

consumers are eventually satiated in public good. To give only two:

u(x; y) = min[x ; y]

and

u(x; y) =

{
xy if y ≤ y∗
xy∗ if y ≥ y∗ .

An example of preferences which satisfy asymptotic satiation, but which do not

exhibit satiation in public goods can be obtained by picking any level set of a Cobb-

Douglas map, say xy = 1 and translating it up and down the 45 degree line to get a

complete family of indifference curves:

u(x; y) = −x− y +
√

(x− y)2 + 4.

In these examples, the offer curves are asymptotic to ωt as y goes to infinity. In

other words, the Lindahl taxes go to zero as the bundle of public goods gets large.

Lemma 7 shows that this is a general implication of asymptotic satiation. This means,

incidentally, that Cobb-Douglas preferences do not satisfy asymptotic satiation. It

is not hard to confirm this by noticing that the compensating variation between two

bundles as described in assumption 4 remains constant.

Lemma 7. Let ER satisfy assumptions A1-A4, B1-B3, and C1. Then for all t ∈ T ,

lim
‖ y ‖ →∞

OCt(y) = ωt.

Proof/

Suppose not. Then

∃ {yν} s.t. ‖ yν ‖ → ∞ and ∃ ε > 0 s.t. ∀ ν′, ∃ ν ≥ ν′ and ∃ xν ∈ OCt(yν)
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s.t. xν ≤ ωt − ε.

Note that the possibility that xν ≥ ωt+ε need not be considered since by monotonicity

all prices are non-negative and so xν ≤ ωt. Also by monotonicity, for all ν, and for all

xν ∈ OCt(yν)

∃ (pν ; qν) ∈ Ht(xν ; yν) s.t. qνyν = pν(ωt − xν).

But since,

(pν ; qν)( 1
2ω

t + 1
2x

ν ; 1
2y
ν) = pνωt,

it follows that

( 1
2ω

t + 1
2x

ν ; 1
2y
ν) �t (xν ; yν).

Recall that asymptotic satiation implies that

∀ x ∈ R+, and ∀ t ∈ T , lim
‖ yν ‖ →∞

CV t(x; 1
2y
ν ;x; yν) = 0.

So by monotonicity, for large ν

( 1
2ω

t + 1
2x

ν ; 1
2y
ν) �t ( 1

2ω
t + 1

2x
ν − 1

2ε; y
ν)

But by hypothesis,

ωt − ε ≥ xν

and therefore,

1
2ω

t + 1
2x

ν − 1
2ε ≥ x

ν .

So by monotonicity,

( 1
2ω

t + 1
2x

ν − 1
2ε; y

ν) �t (xν ; yν).

But then by transitivity,

( 1
2ω

t + 1
2x

ν ; 1
2y
ν) �t (xν ; yν),

which is a contradiction.
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One additional technical assumption will be used to prove this convergence theo-

rem.

A5) There exists θ > 0 such that for all t ∈ T , all (x; y) ∈ X, and all x̂ ≥ x, if

for all (p; q) ∈ Ht(x; y) such that
∑
m∈M

qm
p ≥ q̄, then for all (p̂; q̂) ∈ Ht(x̂; y),∑

m∈M
q̂m
p̂ ≥ θq̄.

This assumption says that if the total of the marginal willingness to pay for all types

of public good for an agent of type t (TMWP t) is larger than some q̄ at an allocation

(x; y), then if additional private good is given to the agent, there is a multiplicative

limit θ on how much the TMWP t can go down. Assumption A5 can be interpreted as

allowing, but limiting the degree to which the marginal rate of substitution of private

good for public goods can increase as the consumption of public goods increases. This

may seem like an odd requirement, but in reality it is only a weakening of better known

assumptions. For example, if preferences are assumed to be quasi-linear in the private

good, then θ = 1. Alternatively if the ordinary assumption of diminishing marginal

rates of substitution in the private good is made, then θ ≥ 1. Thus, Assumption A6 is

not very restrictive.

Theorem 1. Let {ER} be any sequence of economies satisfying A1-A5, B1-B3 and C1.

Then the core converges to the set of Lindahl allocations.

Proof/

Suppose not. Then there exists a sequence of allocations, {(xR; yR)}, such that

for all R, (xR; yR) ∈ C(GR) and

∃ ε > 0 and ∃ α ∈ (0, 1] s.t. ∀ R′ ∃ R > R′, NOC(ε, xR; yR) ≥ α.

Let S be coalition of agents who are off their offer curves by at least ε. Divide S into

two subcoalitions: SR
+

, consisting of the agents who are above their offer curves by ε

or more (and are therefore paying less than their Lindahl taxes), and SR
−

, consisting

of the agents who are below their offer curves by ε or more (and are therefore paying

more than their Lindahl taxes). Formally,

SR
+

≡ {{r, t} ∈ GR | ∀ x̃r,t ∈ OCt(yR), xr,t ≥ x̃r,t + ε} (10)
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and

SR
−
≡ {{r, t} ∈ GR | ∀ x̃r,t ∈ OCt(yR), xr,t ≤ x̃r,t − ε}. (11)

Also define the sequence of allocations {(xR− ; yR
−

)} for the sequence of coalitions SR
−

where xR
−,r,t ≡ ωt− 1

2ε for {r, t} ∈ SR− and yR
−

is the largest feasible vector of public

goods when all the tax revenue collected by SR
−

is spent on a bundle proportional to

yR. Four cases are considered.

1. First, suppose

‖ yR ‖ → ∞ and ∀ R′, ∃ R > R′ s.t.
| SR− |
RT

≥ 1
2α.

Then there exists an arbitrarily large R such that SR
−

can block (xR; yR) with

the allocation (xR
−

; yR
−

). To see this note that the most that GR can collect in

taxes is TRωmax where ωmax is the largest endowment held by any agent of any

type. On the other hand, for all R′, there exists R > R′ such that the tax revenue

collected by SR
−

is at least collects 1
2αTR

1
2ε. But Y is a convex cone with zero

origin, and the tax revenue of the coalition SR
−

is always at least a fraction, σ, of

GR’s for arbitrarily large R where

σ ≡
1
2αRT

1
2ε

TRωmax
=

1
4αε

ωmax
,

and so yR
− ≥ σyR. Thus,

∀ {r, t} ∈ SR
−
, (xR

−,r,t; yR
−

) �t (ωt − 1
2ε;σy

R). (12)

But by asymptotic satiation:

∀ {r, t} ∈ GR, lim
‖ yR ‖ →∞

CV t(xR,r,t;σyR;xR,r,t; yR) = 0.

By lemma 7,

∀ t ∈ T , lim
‖ y ‖ →∞

OCt(y) = ωt.

Therefore, for large R,

∀ {r, t} ∈ SR
−
, ωt − ε ≥ xR,r,t. (13)
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Also by asymptotic satiation for large R,

∀ {r, t} ∈ SR
−
, (ωt − 1

2ε;σy
R) �t (ωt − ε; yR). (14)

So by (12), (13), and (14),

(xR
−,r,t; yR

−
) �t (ωt − 1

2ε;σy
R) �t (ωt − ε; yR) �t (xR,r,t; yR). (15)

Therefore, SR
−

blocks (xR; yR) with (xR
−

; yR
−

) for large R

2. Next suppose

∃ y′ ∈ <+ s.t. ∀ R, ‖ yR ‖ ≤ y′, and ∃ R > R′ s.t.
| SR− |
RT

≥ 1
2α.

Obviously, SR
−

can block (xR; yR) with {(xR− ; yR
−

)} for large R. This is because

the SR
−

collects 1
2α

1
2εRT in taxes at (xR

−
; yR

−
) and clearly 1

2α
1
2εRT → ∞.

Therefore, since by assumption, Y is a cone with zero origin, for large R, yR < yR
−

.

Also,

∀ {r, t} ∈ SR
−
, xR

−,r,t = ωt − 1
2ε > xR,r,t.

In words, SR
−

can block (xR; yR) with an allocation that gives each of its members

more private good, and more public good. Thus no core allocation can place a

fixed fraction of agents ε below their offer curves.

3. Now suppose

‖ yR ‖ → ∞ and ∀ R′, ∃ R > R′ s.t.
| SR+ |
RT

≥ 1
2α.

But by lemma 7,

∀ t ∈ T lim
‖ y ‖ →∞

OCt(y) = ωt.

Therefore, for large R,

∀ {r, t} ∈ SR
+

, xR,r,t ≥ ωt + ε.

But then the agents in GR \SR+

can block (xR; yR) by ejecting the agents in SR
+

from GR and dividing among themselves the net payment of private goods that
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would have gone to these ejected agents. Therefore, no such allocation could be in

the core.

4. Finally, suppose

∃ y′ ∈ <M+ s.t. ∀ R, ‖ yR ‖ ≤ y′ ∀ R′, ∃ R > R′ s.t.
| SR+ |
RT

≥ 1
2α.

First notice that

∀ {r, t} ∈ SR
+

, ∀ R, and ∀ x̂R ∈ OCt(yR), x̂R ≤ ω − ε. (16)

Otherwise, if an agent were above his offer curve by ε he would be receiving a

net subsidy of private good. Then by the argument given in case 3, this could not

be a core allocation.

But equation 16 implies

∀ {r, t} ∈ SR
+

, ∀ (p̂r,t; q̂r,t) ∈ Ht(x̂R,r,t; yR),
∑
m∈M

q̂r,tm
p̂r,t
≥ ε

M × y′
≡ q̄.

But

∀ {r, t} ∈ SR
+

, xR,r,t ∈ [x̂R,r,t, ω],

so by assumption 5,

∀ (pr,t; qr,t) ∈ Ht(xR,r,t; yR),
∑
m∈M

qr,tm
pr,t
≥ θq̄.

But then for large R, and all (pr,t; qr,t) ∈ Ht
(
xR,r,tz

)
,

∑
{r,t}∈SR+

∑
m∈M

qr,tm
pr,t
≥ 1

2αRTθq̄ > Mφ.

In words, the sum the agents’ total marginal willingness to pay for all types of

pubic goods exceeds the marginal cost of uniformly increasing the level of public

goods. Therefore the Samuelson conditions do not hold at (xR; yR), and so the

allocation is not a core allocation as hypothesized.
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The second convergence theorem says that if the marginal value of at least one of

the public goods does not go to zero as the quantity of public goods goes to infinity, the

core converges. This assumption is called strict non-satiation and it is even easier to

see why it drives the result. For coalitions of sufficiently large size, strict non-satiation

implies that every core allocation is one in which almost all of the private good is used

to produce a Pareto optimal quantity of public goods. This obviously coincides with

the Lindahl Equilibria.

As was noted in the introduction, this assumption is of less practical interest than

asymptotic satiation. It implies that agents have such a strong preference for public

activity that even for economies of moderate size, they choose to devote all of their

resources to public goods. Perhaps this might reflect the tastes of members of utopian

communities, but it these preferences are not shared by the majority of consumers.

Formally, strict non-satiation is defined as:

A6) ∀ (x; y) ∈ X, ∀ t ∈ T and ∀ (p; q) ∈ Ht(x; y), ∃ m ∈ M, and ∃ β >

0 s.t. qm/p ≥ β.

An example of a class of preferences that satisfy strict non-satiation is any prefer-

ence relation in which public goods and private goods are perfect substitutes.

Lemma 8. Let {ER} be any sequence of economies satisfying A1-A3, A6, B1-B3, and

C1. Let {(xR; yR)} be a sequence of allocations such that for all R, (xR; yR) ∈ C(GR).

Finally, given ε > 0, let SRε ≡ {{r, t} ∈ GR | xR,r,t ≥ ε}. Then,

∀ ε > 0, lim
R→∞

| SRε |
RT

≡ αRε = 0.

Proof/

Suppose not. Then

∃ {(xR; yR)} s.t. ∀ R, (xR; yR) ∈ C(GR), ∃ ε > 0, and ∃ ᾱ ∈ (0, 1]

s.t. ∀ R′, ∃ R ≥ R′ s.t. αRε ≥ ᾱ.

Let

SR,tε ≡ {{r, j} ∈ SRε | j = t}.

22



Then, since there are only a finite number of agents types,

∃ t′ ∈ T and ∃ α̂ ∈ (0, 1] s.t. ∀ R′, ∃ R ≥ R′, s.t.
| SR,t′ε |
RT

≡ αR,t
′

ε ≥ α̂.

In words, at least α̂ × RT agents of some type t′ consume more than ε of the private

good at some core allocation for an economy of arbitrarily large size.

Without loss of generality, suppose agents of type t′ are strictly non-satiated in

public good m. Then by strict non-satiation,

∀ (pr,t
′
; qr,t

′
) ∈ Ht(xR,r,t; yR),

qr,t
′

m

pr,t
′

n

≥ β > 0.

But since by monotonicity all prices are non-negative:

∀ R′, ∃ R ≥ R′ s.t. ∀ (pr,t; qr,t) ∈ Ht(xR,r,t; yR)
∑
r∈R

∑
t∈T

qr,tm
pr,t
≥ α̂RTβ.

However, by assumption B3,

∀ (z; y) ∈ Y, and ∀ (p̃; q̃) ∈MCm(z; y), q̃m/p̃ ≤ φ.

So clearly, for large enough R, φ < α̂RTβ. Thus, for large enough R, the Samuelson

conditions are not satisfied at (xR; yR). This contradicts the hypothesis that {(xR; yR)}

is a sequence of core allocations for GR.

In words, it is impossible for a fixed fraction of agents to consume a positive

quantity of the private good because, eventually, these agents become so numerous

that even among themselves, the marginal benefit of spending their private good on

public goods production exceeds the cost. Thus, no such allocation could be Pareto

optimal, much less in the core.

Lemma 9. Let {ER} be any sequence of economies satisfying A1-A3, A6, B1-B3, and

C1. Let {(xR; yR)} be such that for all R, (xR; yR) ∈ C(GR). Then

lim
R→∞

OCt(yR) = 0.
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Proof/

Lemma 8 implies that

lim
R→∞

∑
{r,t}∈GR

ωt − xr,t =∞.

Thus, for every t ∈ T there is a public good m ∈ M satisfying strict non-satiation for

which

yRm →∞.

Then suppose,

∀ R′, ∃ R ≥ R′ s.t. ∃ t ∈ T , and ∃ ε ≥ 0 and ∃ x ∈ OCt(yR) s.t. x ≥ ε.

But then for large R, for agents of type t, since (xR; yR) ∈ C(GR), the Samuelson

condition and Assumption B3 imply that

∀ r ∈ R, ∃ (pr; qr) ∈ Ht(xR,r,t; yR), s.t.
∑
r∈R

qrm
pr
≤ φ.

But this is impossible by strict non-satiation since for large R,

∑
r∈R

qrm
pr
≥ Rβ > φ.

But this contradicts the assumption of strict non-satiation.

Note that the two assumptions discussed in this section have exactly opposite

implications for the behavior of the offer correspondence. Strict non-satiation implies

that the offer correspondence converges to zero, while asymptotic satiation implies

that it converges to the agent’s endowment. The question core converges when the

offer curve does neither of these things is taken up in the next section. First, it is

shown that strict non-satiation is a sufficient condition for core convergence.
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Theorem 2. Under assumptions A1-A3, A6, B1-B3, and C1 the core converges to the

set of Lindahl equilibria.

Proof/

By lemma 9,

∀ {(xR; yR)} s.t. ∀ R(xR; yR) ∈ C(GR), lim
R→∞

OCt(yR) = 0.

By lemma 8,

∀ ε ≥ 0 lim
R→∞

αRε ≡
| SRε |
RT

= 0.

Then since agents can’t consume negative quantities of private goods it follows imme-

diately that,

ε > 0 lim
R→∞

NOC(ε, xR; yR) = 0.

It is worth noting that core convergence also holds if some types of agents in the

economy satisfy asymptotic satiation, and others satisfy strict non-satiation. Theorem

2 says that all almost agents who are strictly non-satiated are almost exactly on their

offer curves for any core allocation of a large enough economy. Theorem 1 says the

same for agents who are asymptotically satiated. Thus, if both types are in a single

economy, then almost all of both types are almost exactly on their offer curves for every

core allocation of a large enough economy. Therefore, the core converges.

4. Non-Convergence

This section explores the conditions under which the core can be shown not to

converge to the set Lindahl equilibrium allocations. Attention is restricted to the class

of one private good, one public good economies satisfying A1-A3, and B1-B3, and
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for which all consumers have smooth quasi-linear preferences. Formally, these two

additional restrictions on the economy are:

A7) For all t ∈ T , �t can be represented by a utility function of the form ut(x; y) =

x+ gt(y)

(Transferable utility)

A8) For all t ∈ T , and all (x; y) ∈ X, if (p; q) ∈ Ht(x; y) and (p′; q′) ∈ Ht(x; y) then

(p; q) = (p′; q′).

(smoothness)

Note that assumptions A1-A3 imply that gt(y) is quasi-concave, continuous, and

monotonic. Also note that assumption A7 implies that for any (x; y) ∈ X, if (p; q) ∈

Ht(x; y) then (p; q) ∈ Ht(x′; y) for any x′ ≥ 0

Recall that strict non-satiation implies that agents’ offer curves converge to zero

as the level of public good goes to infinity. That is, agents pay almost all of their

endowment of private good for high levels of public good consumption at every Lindahl

allocation. Asymptotic satiation, on the other hand, implies that agents’ offer curves

converge to the agents’ endowment. That is, agents pay almost nothing for high levels

of public good consumption at every Lindahl allocation. The main theorem of this

section shows that if neither one of these two conditions holds, then core is larger than

the set of Lindahl allocations regardless of the size of the economy. More specifically, it

will be shown that if for at least one agent type (without loss of generality, let this be

agent type 1), the offer curve is strictly bounded from both zero and the endowment,

then the core does not converge. This is in the spirit of negating the conditions that

guaranteed convergence, but is logically unrelated. This condition is given formally

below.

A9) There exists ε > 0 and there existsy′ ≥ 0 such that if y ≥ y′ then for all x ∈

OC1(y), ωt − ε ≥ x ≥ ε.

In addition we will make the technical assumption that agents of type 1 have

strictly convex preferences.

A10) For all (x; y), (x′; y′) ∈ X such that y > y′ and (x; y) ∼1 (x′; y′), if (p; q) ∈ Ht(x; y)

26



and (p′; q′) ∈ Ht(x′; y′) then q/p < q′/p′.

(Strictly convex preferences for agents of type 1)

Lemma 10 uses these the assumptions of strict convexity and transferable utility

to prove a useful fact about the set of supporting prices of type 1.

Lemma 10. For all ER that satisfy A1-A3, A7-A10, B1-B3 and C1, and for all

(x; y), (x̄; ȳ) ∈ X such that y > ȳ, if (p; q) ∈ H1(x; y) and (p̄; q̄) ∈ H1(x̄; ȳ) then

q/p < q̄/p̄.

Proof/

1. Suppose first that (x; y) ∼1 (x̄; ȳ). Then assumption A10 can be used directly to

conclude that the lemma is true.

2. Suppose next that (x; y) �1 (x̄; ȳ). Then by transferable utility,

∃ x′ > 0 s.t. (x′; ȳ) ∼1 (x; y).

But then the assumption of transferable utility implies

if (p̄; q̄) ∈ H1(x̄; ȳ) then (p̄; q̄) ∈ H1(x′; ȳ).

Also by strict convexity, for agents of type 1,

if y > ȳ, (x′; ȳ) ∼1 (x; y), (p̄; q̄) ∈ Ht(x′; ȳ) and (p; q) ∈ Ht(x; y),

then,
q

p
<
q̄

p̄
.

3. Finally, suppose that (x; y) ≺1 (x̄; ȳ). Again, transferable utility implies that

∃ x′ > 0 s.t. (x′; y) ∼1 (x̄; ȳ).

But then by transferable utility,

if (p; q) ∈ H1(x; y) then (p; q) ∈ H1(x′; y).
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But then by strict convexity, for agents of type 1,

if y > ȳ, (x′; y) ∼1 (x̄; ȳ), (p; q) ∈ Ht(x; y), and (p̄; q̄) ∈ Ht(x̄; ȳ)

then,
q

p
<
q̄

p̄
.

A similar lemma can be proven about all agent types using transferable utility,

smoothness, and convexity.

Lemma 11. For ER satisfying A1-A3, A7-A10, B1-B3 and C1, for all t ∈ T , and

all (x; y), (x̄; ȳ) ∈ X such that y ≥ ȳ, if (p; q) ∈ Ht(x; y) and (p̄; q̄) ∈ Ht(x̄; ȳ) then

q/p ≤ q̄/p̄.

Proof/

By transferable utility and smoothness,

∀ t ∈ T , ∀ x, x̄ ≥ 0, ∀ y ≥ 0,

if (p; q) ∈ Ht(x; y) and , (p̄; q̄) ∈ Ht(x̄; y), then (p; q) = (p̄; q̄).

But by convexity and smoothness,

∀ t ∈ T , if (x; y) ∼t (x̄; ȳ), y ≥ ȳ(p; q) = Ht(x; y) and , (p̄; q̄) = Ht(x̄; y),

then
q

p
≤ q̄

p̄
.

Therefore,

∀ t ∈ T and ∀ x, x̄ ≥ 0, if y ≥ ȳ,

then ∀ (p; q) ∈ Ht(x; y) and ∀ (p̄; q̄) ∈ Ht(x̄, ȳ),

q

p
≤ q̄

p̄
.
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This entire section considers a one private, one public good economy satisfying A1-

A3, A7-A10, B1-B3, and C1. Reference to this fact will be omitted in the statement

of the propositions that follow. Let {(x̄R; yR)} denote a sequence of equal treatment

Lindahl allocations. Formally, for all R

(x̄R; yR) ∈ {(x; y) ∈ L(GR) | ∀ t ∈ T and ∀ r, r′ ∈ R, xr,t = xr
′,t}. (17)

Lemma 12 shows that such allocations exist.

Lemma 12. Let (x; y) ∈ L(GR). Then (x̄; y) ∈ L(GR) where for all {r, r} ∈ R× T ,

x̄r,t =

∑
r∈R x

r,t

R
.

Proof/

First note that the allocation (x̄; y) is feasible since

R
∑
t∈T

[ωt − x̄t] =
∑

{r,t}∈R×T
[ωt − xr,t],

and  ∑
{r,t}∈R×T

[ωt − xr,t]; y

 ∈ Y.
Thus, to show that (x̄; y) ∈ L(GR) it need only be shown x̄t ∈ OCt(y) for all t ∈ T .

So for particular type t, let

xtmin ≡ min
r∈R

xr,t,

and

xtmax ≡ max
r∈R

xr,t.

Then by definition,

∃ (p; qmin) ∈ Ht(xtmin; y) s.t. (p; qmin)(xtmin − ωt; y) = 0,
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and

∃ (p; qmax) ∈ Ht(xtmax; y) s.t. (p; qmax)(xtmax − ωt; y) = 0.

But then the assumption of transferable utility,

∀ x′ > 0, (p; qmin) ∈ Ht(x′; y) and (p; qmax) ∈ Ht(x′; y).

Also, by lemma 4, Ht is convex valued, and so

∀ λ ∈ [0, 1], and ∀ x′ ≥ 0, λ(p; qmin) + (1− λ)(p; qmax) ∈ H(x′; y).

But then clearly,

∃ (p; q̄) ∈ Ht(x̄t; y) s.t. (p; q̄)(x̄t − ωt; y) = 0.

Thus, x̄t ∈ OCt(y).

Also note the following fact about any sequence of Lindahl allocations under these

assumptions.

Lemma 13. For all R, let (xR; yR) ∈ L(GR). Then

lim
R→∞

yR =∞.

Proof/

1. First notice

∃ ε > 0 s.t. ∀ y > 0, OC1(y) ≥ ε.

This is immediate from assumption A9 for y ≥ y′. So suppose

∃ y ∈ (0, y′) s.t. OC1(y) = 0.

But then since y > 0,

∃ (p; q) ∈ H1(ω1; y) s.t. q = 0.
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Then by lemma 10,

∀ x ≥ 0 and y′′ > y, ∃ (p; q) ∈ H1(x; y′′), s.t. q/p < 0.

But this is impossible since monotonicity implies that prices are positive.

2. Therefore, if y > 0, then for all R, the total Lindahl taxes collected by GR at

every Lindahl allocation is bounded from below by RTε. Then since the amount

of taxes spent on public goods goes to infinity as the economy increases in size, and

by assumption each unit of public good costs one unit of private good, yR →∞.

3. It only remains to show that it is impossible that no public goods be produced

at any Lindahl equilibrium for a sufficiently large economy. But lemma 10 and

monotonicity imply that,

∀ x ≥ 0, and ∀ (p; q) ∈ H1(x; 0), ∃ q̂ > 0 s.t. q/p > q̂.

Otherwise for y > 0, q < 0 in violation of the assumption of monotonicity. But

then for large R,

∀ t ∈ T , ∀ x ≥ 0, ∀ (p; q) ∈ Ht(x; 0), and ∀ (p̃; q̃) ∈MC(0; 0)

∑
{r,t}∈GR

qr,t

p
≥ Rq̂ > φ ≥ q̃

p̃
.

Thus, the Samuelson conditions are not satisfied for large R and so producing no

public good could not be Pareto optimal, and therefore not a Lindahl allocation.

Now let us turn our attention to attempting to construct an allocation that is

different from (x̄R; yR) and yet is still an element of the core. For even numbered

replications, split the agents of type 1 evenly into two new types called 1− and 1+.

Agents {r, 1} for r = 1, . . . , R2 , will now be referred to as {r, 1−} for r = 1, . . . , R2 ,

and the agents {r, 1} for r = R
2 + 1, . . . , R, will now be referred to as {r, 1+} for

r = 1, . . . , R2 . Consider (x̄Rε ; yR) as a possible element of the core where x̄R,r,1
−

ε =
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x̄R,1 − ε, for r = 1, . . . , R2 , x̄
R,r,1+

ε = x̄R,1 + ε, for r = 1, . . . , R2 , and x̄R,r,tε = x̄R,t for

r ∈ R and t = 2, . . . , T. In words, (x̄Rε ; yR) is an allocation that differs from the equal

treatment Lindahl allocation (x̄R; yR) only in that all agents of type 1− are taxed an

extra ε units of private good, and agents of type 1+ are taxed ε less. Note that by

assumption A9, the offer curve of agents of type 1 are strictly bounded from both zero

and the endowment by ε. Thus, all agents receive an amount of private good that is

positive but less than ωt at (x̄Rε ; yR).

Lemma 14. If a coalition S can block (x̄Rε ; yR), then it must include some agents of

type 1.

Proof/

Suppose not. Then since agents of types t = 2, . . . , T are exactly as well off at

(x̄Rε ; yR) as they are at (x̄R; yR), if S can block (x̄Rε ; yR) then S can also block (x̄R; yR).

But (x̄R; yR) is a Lindahl equilibrium and therefore in the core. Thus no such S could

block (x̄Rε ; yR).

Lemma 15. If a coalition S can block (x̄Rε ; yR), then it must exclude some agents of

type 1.

Proof/

Suppose S is coalition that can block (x̄Rε ; yR) with an allocation (xS ; yS) and

includes all the agents of type 1. Note that agents of types t = 2, . . . , T are exactly as

well off at (x̄Rε ; yR) as they are in the (x̄R; yR), and so must be at least as well off at

(xS ; yS) as at (x̄R; yR). Consider two cases:

1. Suppose

∃ {r, 1+} ∈ S s.t. xS,r,1
+

≤ ε.

Then since (xS,r,1
+

; yS)�1 (x̄R,1+ε; yR) by transferable utility, (0; yS) �1 (x̄R,1; yR).

But no agent can receive a negative allocation of private good. So the worst al-

location that any agent of type 1 can receive in the coalition S is (0; yS). Thus
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all agents of type 1 are already at least as well off at (xS ; yS) as at (x̄R; yR). But

then (xS ; yS) blocks (x̄R; yR), which is impossible since (x̄R; yR) is in the core.

2. Now suppose

∀ r = 1, . . . ,
R

2
, xS,r,1

+

≥ ε

consider the allocation that obtains if for all r = 1, . . . , R2 , agent {r, 1+} transfers ε

private good to agent {r, 1−} By transferable utility, both types are at least as well

off as at (x̄R; yR), and other agents are unaffected. The coalition S can therefore

block (x̄R; yR) using this allocation. But again contradicts the fact that (x̄R; yR)

is in the core.

Lemma 16. If there exists a coalition S ⊆ GR that can block (x̄Rε ; yR), then (x̄Rε ; yR)

can also be blocked by a coalition S′ that contains all the agents of type 1− and none

of the agents of type 1+

Proof/

By lemma 14, S must contain some agents of type 1. Suppose first that

∀ {r, 1} ∈ S, xS,r,1 ≥ ωt.

That is, suppose all agents of type 1 pay nothing or receive a net subsidy for being in S

rather than contributing taxes to help produce public goods. Then clearly, it is possible

to throw all agents of type 1 out of the coalition S, and still produce an allocation that

blocks (x̄Rε ; yR) by simply producing the same bundle of public goods, and distributing

the subsidy that would have gone to the type 1’s among the remaining agents. But

this contradicts lemma 14 and so can not be the case.

Thus,

∃ {r, 1} ∈ S s.t. xS,r,1 < ωt.

Suppose that this agent happens to be of type 1+. Recalling that all 1+’s are treated

equally in the allocation (x̄Rε ; yR), by monotonicity,

(ω1; yS) �1 (xS,r,1; yS) �1 (x̄R,1
+

ε ; yR) �1 (x̄R,1
−

ε ; yR).
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Thus, all agents of type 1 who are not already members S could be included in a

larger coalition S′ and be allowed to enjoy yS public good while consuming their full

endowment of private good. In other words, it is possible to admit all agents of type 1

not already in S to the coalition for free. These agents are at least as well off as they

are at the allocation (x̄Rε ; yR), and so this allocation over the coalition S′ also blocks

(x̄Rε ; yR). But this contradicts lemma 15.

Therefore, no agent of type 1+ can pay positive taxes. As a consequence it is

possible to exclude them from the coalition S and still block. But then

∃ {r, 1−} ∈ S s.t. xS,r,1
−
< ωt.

Then following the argument above, recall that all 1−’s are treated equally in the

allocation (x̄Rε ; yR). It follows by monotonicity that,

(ω1; yS) �t (xS,r,1; yS) �t (x̄R,1
−

ε ; yR).

Thus, all agents of type 1− who are not already members S could be included in a larger

coalition S′ allowed to enjoy yS public goods while consuming their full endowment of

private good. These agent are at least as well off as they are at the allocation (x̄Rε ; yR),

and so this allocation over the coalition S′ that includes all 1− and excludes all 1+ also

blocks (x̄Rε ; yR).

Lemma 17. If there exist a coalition S ⊆ GR that can block (x̄Rε ; yR), then (x̄Rε ; yR)

can also be blocked by a coalition S′ that contains all the agents of type 1−, no agents

of type 1+, and is S′-optimal.

Proof/

By lemma 16, if S can block, then an S′ can block that contains all the type

1−’s and none of the type 1+’s. Suppose that the blocking allocation over S′ is not

S′-optimal. Then take any Pareto superior and S′-optimal allocation over S′. Clearly,

such an allocation must also block the grand coalition’s allocation.
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So far it has been shown that if (x̄Rε ; yR) can be blocked, it can be blocked by

a coalition of the type described in lemma 17. The next step is to exploit the fact

that there exists a blocking coalition that contains no agents of type 1+ to gain more

information about this coalition and the associated blocking allocation.

Consider the question of what it would take to persuade all the agents of type 1+

to join the blocking coalition. It would be certainly be possible to do so if each of these

agents of type 1+ could be made at least 2ε better off in terms of private good than

agents of type 1−. This is because agents of type 1+ get exactly 2ε more private good

than agents of type 1− at (x̄Rε ; yR). However, if S is to remain a blocking coalition,

all the original agents must be at least as well off as they are at (x̄Rε ; yR) after private

good has been collected to “bribe” the agents of type 1+ join S.

Thus the first question to answer for any such blocking coalition S is what is the

maximum bribe in transferable utility terms that can be offered to each agent of type

1+ in order to induce them to join the blocking coalition, and yet still leave all the

original agents in S at least as well off as they are at the allocation (x̄Rε ; yR). The next

question, of course, is whether or not this bribe is sufficient. If the answer is yes, then

there exists a coalition that includes all the type 1’s, and that blocks (x̄Rε ; yR). Since

this is impossible by lemma 15, the original blocking coalition S could not have existed.

Thus, (x̄Rε ; yR) is in the core.

Consider the first question. There are two possible sources for this bribe. The

first is any surplus transferable utility that exists at the blocking allocation. In other

words, suppose that as much private good as possible is taken away from each agent

in S while being careful to leave them at least as well off as they are at the allocation

(x̄Rε ; yR). This surplus could be divided evenly among the types 1+ as a bribe to join S.

Notice two things about this surplus. First, if a coalition blocks, the surplus associated

with the blocking allocation must be positive. Second, since all agents of the same type

(understanding that 1+ and 1− are different types) are treated equally in the allocation

(x̄Rε ; yR), they all must end up with identical allocations when all possible surplus is
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taken away from them. Formally, the surplus is defined as sur : < | S | ×<×<RT ×< →

< :

sur((x; y), (x̃; ỹ)) ≡
(

2

R

) ∑
{r,t}∈S

CVt((x̃
r,t; ỹ), (xr,t; y)) (18)

The second possible source for a bribe comes from the fact that types 1+ may

be allowed to join for free. That is, they may be allowed to join while paying no

taxes, and consuming their endowment. Thus the difference between the consumption

of private good by agents of 1− after all potential surplus has been extracted from

them, and the endowment of type 1’s, measures how much better it is possible to make

each agent of type 1+ compared to agents of type 1− by allowing the 1+’s into S

without paying any taxes. Call this the bonus utility. Formally, the bonus is defined as

bon : < | S | ×<× <RT ×< → < :

bon((x; y), (x̃; ỹ)) ≡ ω1 − {min z | (z, y) �1 (x̃1
−
, ỹ)} (19)

Thus bon((x; y), (x̃; ỹ))+sur((x; y), (x̃; ỹ)) is the total amount of private good that

can be given to each 1+ in excess of what agents of type 1− get in order to induce them

to join the coalition S, while still leaving all the original agents in S at least as well

off as at the allocation (x̄Rε ; yR). The next few lemmas describe properties of these two

correspondences on the assumption that (x̄Rε ; yR) can be blocked with an S-optimal

allocation by a coalition S that includes all the type 1−’s and none of the type 1+’s.

Since by lemma 17, if (x̄Rε ; yR) can be blocked by any coalition it can also be blocked

by one having these properties, it is sufficient to show that the properties shown for

this coalition lead to a contradiction.

Lemma 18. For all R, and for any S ∈ GR that contains all types 1− and no types

1+ that can block (x̄Rε ; yR), with an S-optimal allocation (xS ; yS),

bon((xS ; yS), (x̄Rε ; yR)) + sur((xS ; yS), (x̄Rε ; yR)) ≤ 2ε.
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Proof/

Suppose

bon((xS ; yS), (x̄Rε ; yR)) + sur((xS ; yS), (x̄Rε ; yR)) > 2ε,

then there is enough excess private good to leave all the agents in S as well off as they

are at the allocation (x̄Rε ; yR) and yet offer each type 1+ a level of consumption that

leaves them 2ε better off than each type 1−. But then types 1+ are better off than at

(x̄Rε ; yR). So there exists a coalitions S that has all the type 1’s, and blocks (x̄Rε ; yR).

But this contradicts lemma 15.

Lemma 19. For all R, and for all S ⊂ GR that contains all types 1− and no types 1+

that can block (x̄Rε ; yR), with an S-optimal allocation (xS ; yS),

bon((xS ; yS), (x̄Rε ; yR)) ≥ sur((xS ; yS), (x̄Rε ; yR)).

Proof/

Suppose instead that

bon((xS ; yS), (x̄Rε ; yR)) = ε′ < ε′′ = sur((xS ; yS), (x̄Rε ; yR)).

First notice that ε′ > 0. This is because if ε′ ≤ 0 then at the allocation (xS ; yS), type

1−’s pay no taxes, or may even be getting a net subsidy to be members of the blocking

coalition S. But then, it is possible to form another blocking coalition without any

type 1’s at all by producing the same level of public good and distributing the net

subsidy of private good that would have gone to the 1−’s over the rest of the agents in

S. This contradicts lemma 14. Also note that if S is able to block with (xS ; yS), then

sur((xS ; yS), (x̄Rε ; yR)) > 0. Thus by lemma 18, ε′ + ε′′ ≤ 2ε, so clearly 0 < ε′ ≤ ε.

Now consider the allocation (x̄Rε−ε′ ; y
R). This differs from (x̄Rε ; yR) only in that

ε − ε′ is taken from types 1− and given to types 1+ instead of ε. Agents of types

t = 2, . . . , T are indifferent between the two allocations. But since

x̄R,1
−

ε−ε′ = x̄R,1
−

ε + ε′,
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each agent of type 1− will need to be compensated an additional ε′ < ε′′ in order to

induce him to stay in the coalition S. Since by hypothesis, ε′′ > ε′,

sur((xS ; yS), (x̄Rε−ε′ ; y
R)) = ε′′ − ε′ > 0.

In addition, the maximum contribution of the type 1−’s to the production of yS , the

public goods level of the blocking coalition must go down by exactly ε′. Thus

bon((xS ; yS), (x̄Rε−ε′ ; y
R)) = 0.

But then it would be possible to get rid of all the type 1−’s, since they contribute noth-

ing to public goods production of the coalition S, and still have a blocking allocation

over the remaining agents. But again, this is a contradiction of lemma 14.

Lemma 20. For all ε′ ∈ [0, ε], if an S-optimal allocation (xS ; yS) for a coalition S

that contains all types 1− and no types 1+ can block (x̄Rε′ ; y
R) then it can also block

(x̄Rε ; yR).

Proof/

Agents of type 1− are better off at (x̄Rε′ ; y
R) than at (x̄Rε ; yR) since ε′ ≤ ε. All other

agents in S are exactly as well off at these two allocations. Thus, if (xS ; yS) blocks

(x̄Rε′ ; y
R) then trivially, all agents are at least as well off at (xS ; yS) as at (x̄Rε ; yR).

Lemma 20 is useful since it implies that only coalitions that can block (x̄Rε ; yR)

have the potential to block (x̄Rε′ ; y
R) for any ε′ ≤ ε. As a consequence, all properties

that have been shown about coalitions that block (x̄Rε ; yR) must also hold for coalitions

that block (x̄Rε′ ; y
R). In lemma 21 the asymptotic behavior of such blocking coalitions

is considered.

Lemma 21. Suppose that for all ε′ ∈ (0, ε], there exists a sequence of coalitions, {SR},

containing all agents of type 1− and no agents of type 1+, such that there exists R′, such
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that for all R ≥ R′ SR can block the allocation (x̄Rε′ ; y
R) with an S-optimal allocation

(xS
R

ε′ ; yS
R

ε′ ), then there also exists {(xSR ; yS
R

)}, a sequence of allocations for {SR}, such

that there exists R′ such that for R ≥ R′, SR can block (x̄Rε ; yR) with (xS
R

; yS
R

), and

for which

lim
R→∞

xS
R,1− = ω1.

Proof/

Suppose that for any ε′ ∈ (0, ε], such a sequence of blocking coalitions, (xS
R

ε′ ; yS
R

ε′ ),

exists. Recall that by lemma 18 for all R,

bon((xS
R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)) + sur((xS

R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)) ≤ 2ε′.

But by lemma 19,

bon((xS
R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)) ≥ sur((xS

R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)),

and since the coalition blocks,

sur((xS
R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)) > 0.

Thus

2ε′ ≥ bon((xS
R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)) + sur((xS

R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)) ≥ 0.

also recall that by hypothesis, for any ε′ ∈ (0, ε] there exists a sequence of coalitions

{SR} that contains all agents of type 1− and no agents of type 1+ and a sequence of

S-optimal allocations {(xSRε′ ; yS
R

ε′ )} that allow SR to block (x̄Rε′ ; y
R), for large enough

R. But ε′ can be chosen arbitrarily small. And since

2ε′ ≥ bon((xS
R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)) + sur((xS

R

ε′ ; yS
R

ε′ ), (x̄Rε′ ; y
R)) ≥ 0.

there must exist a sequence of allocations {(xSR ; yS
R

)} that allow SR to block (x̄Rε′ ; y
R)

for large R and for which

bon((xS
R

; yS
R

), (x̄Rε′ ; y
R))→ 0.
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But if (xS
R

; yS
R

) blocks (x̄Rε′ ; y
R), then by lemma 20, (xS

R

; yS
R

) must also block

(x̄Rε ; yR). Then since

bon((xS
R

; yS
R

), (x̄Rε′ ; y
R))→ 0,

it must also be true that

lim
R→∞

xS
R,1− → ω1,

and {(xSR ; yS
R

)} is a sequence of S-optimal allocations defined over a sequence of

coalitions that contains all type 1−’s and no type 1+ that blocks the sequence {(x̄Rε ; yR)}

for large R.

Lemma 22. Let SR ⊂ GR be any coalition that includes all agents of type 1− and no

agents of type 1+. Also, let (x̄S
R

; ȳS
R

) be an equal treatment Lindahl allocation for

SR let and (x̄R; yR) be an equal treatment Lindahl allocation for GR. Then ȳS
R

< yR.

Proof/

Suppose instead that ȳS
R ≥ yR. By lemma 11,

∀ {r, t} ∈ SR and ∀ x, x′ ≥ 0, if yS
R

≥ yR,

then ∀ (pR,r,t; qR,r,t) ∈ Ht(x, yR) and ∀ (pS
R,r,t; qS

R,r,t) ∈ Ht(x′, ȳS
R

),

qR,r,t

pR,r,t
≥ qS

R,r,t

pSR,r,t
.

Also by assumption, the agents of type 1+, who are not included in SR, are never

satiated in the public good, qR,1
+

/pR,1
+

> 0. So,

∑
{r,t}∈GR

qR,r,t

pR,r,t
>

∑
{r,t}∈SR

qS
R,r,t

pSR,r,t
.

But there is only one public good, and the production set is a cone. Thus the marginal

cost of public good is unique. Then let

(p̃; q̃) = MC

 ∑
{r,t}∈SR

[xS
R,r,t − ωt]; ȳS

R

 .
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But since (xS
R

; ȳS
R

) is SR-optimal,

∑
{r,t}∈GR

qR,r,t

pR,r,t
>

∑
{r,t}∈SR

qS
R,r,t

pSR,r,t
=
q̃

p̃
.

Therefore, (x̄R; yR) does not satisfy the Samuelson conditions, and so could not be a

Lindahl allocation.

Theorem 3. For any sequence {ER} of one private good, one public good economies

satisfying assumptions A1, A2, A3, A7, A8, A9, A10, and B1-B3, the core does not

converge to the set of Lindahl allocations.

Proof/

First it will be shown that the conditions of lemma 21 must be false, and therefore

there must exist an ε′ > 0 such that for any R′ there is an R ≥ R′ such that (x̄Rε′ ; y
R) ∈

C(GR). Suppose not. Then by lemma 21, there exists a sequence of coalitions {SR}

that contain all agents of type 1− and no agents of type 1+, such that there exists

R′ such that for R ≥ R′, SR can block the allocation (x̄Rε ; yR) with an SR-optimal

allocation (xS
R

; yS
R

) for which

lim
R→∞

xS
R,1− = ω1.

Recall that (x̄S
R

; ȳS
R

) is defined to be any equal treatment Lindahl allocation over the

coalition SR

1. Suppose first that yS
R

> ȳS
R

. Then lemma 10

∀ (p̄S
R,1; q̄S

R,1) ∈ H1(x̄S
R,1; ȳS

R

), and (pS
R,1; qS

R,1) ∈ H1(xS
R,1; yS

R

),

q̄S
R,1

p̄SR,1
>
qS

R,1

pSR,1
.

Also by lemma 11, for all t ∈ T ,

∀ (p̄S
R,t; q̄S

R,t) ∈ Ht(x̄S
R,t; ȳS

R

), and (pS
R,t; qS

R,t) ∈ H1(xS
R,t; yS

R

),
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q̄S
R,t

p̄SR,t
≥ qS

R,t

pSR,t
.

Again, since there is only one public good and the technology is conic, let

(p̃; q̃) = MC

 ∑
{r,t}∈SR

[xS
R,r,t − ωt]; ȳS

R

 .

But then ∑
{r,t}∈SR

qS
R,t

pSR,t
<

∑
{r,t}∈SR

q̄S
R,t

p̄SR,t
=
q̃

p̃
.

That is to say, the Samuelson conditions are not satisfied at (xS
R

; yS
R

). Thus,

(xS
R

; yS
R

) cannot be Pareto optimal, in contradiction of the hypothesis.

2. Now suppose that yS
R

< ȳS
R

. Then by lemma 10,

∀ (p̄S
R,1; q̄S

R,1) ∈ H1(x̄S
R,1; ȳS

R

), and (pS
R,1; qS

R,1) ∈ H1(xS
R,1; yS

R

),

q̄S
R,1

p̄SR,1
<
qS

R,1

pSR,1
.

Also by lemma 11, for all t ∈ T ,

∀ (p̄S
R,t; q̄S

R,t) ∈ Ht(x̄S
R,t; ȳS

R

), and (pS
R,t; qS

R,t) ∈ H1(xS
R,t; yS

R

),

q̄S
R,t

p̄SR,t
≤ qS

R,t

pSR,t
.

But then ∑
{r,t}∈SR

qS
R,t

pSR,t
>

∑
{r,t}∈SR

q̄S
R,t

p̄SR,t
=
q̃

p̃
.

Again the Samuelson conditions are not satisfied at (xS
R

; yS
R

). Thus, (xS
R

; yS
R

)

cannot be Pareto optimal, in contradiction of the hypothesis.

3. Finally suppose that yS
R

= ȳS
R

. But then since all agents not of type 1 are at

least as well off at the blocking allocation as they are at the grand coalition’s

allocation, and by lemma 22 the grand coalition produces more public good at a

Lindahl allocation as does the subcoalition SR,

∀ {r, t} ∈ SR s.t. t 6= 1, xS
R,r,t ≥ x̄S

R,r,t.
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Also, by lemma 21, xS
R,1 → ω1. But by assumption 10,

xS
R,1 → ω1 > ω1 − ε ≥ x̄S

R,1.

But then
∑
{r,t}∈SR(ωt − xSR,r,t) = yS

R

< (ωt − x̄SR,r,t) = ȳS
R

. Contradicting

the hypothesis of case 3.

Therefore there must exist an ε′ > 0 such that (x̄Rε′ ; y
R) is in the core for economies

of arbitrarily large size. If not then there must exist a coalition containing all the

agents of type 1− and no agents of type 1− that blocks (x̄Rε ; yR) with a Pareto optimal

allocation that has neither more, nor less, nor exactly ȳS
R

public good. Clearly this is

impossible.

It only remains to show that (x̄Rε′ ; y
R) is not a Lindahl allocation. But this is

immediate since by smoothness, the supporting price ratio is unique. Thus OC1(yR)

has a unique value x̄R,1. But then all agents of type 1− are ε′ below their offer curves,

while agents of type 1+ are ε′ above their offer curves at this core allocation. Thus, for

large R, (x̄Rε′ ; y
R) ∈ C(GR) and yet

NOC(ε′; x̄Rε′ ; y
R) =

1

T
.

Therefore, the core does not converge to the set of Lindahl allocations.

5. Conclusion

Muench showed that core of a public goods continuum economy is not necessarily

equivalent to the set of Lindahl allocations. The question of the generality of this result

was left open. This paper goes part way to giving an answer. Both asymptotic satia-

tion and strict non-satiation are shown to be sufficient to guarantee core convergence

for a class of convex and monotone public goods economies. These two conditions,
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however, appear to describe be extreme cases. Asymptotic satiation implies that the

offer correspondences converge to the endowment, and that in the limit, a negligible

part of the private goods are devoted to public goods production at any core allocation.

Strict non-satiation, on the other hand, implies that the offer curves converge to zero,

and that essentially all of the private goods are devoted to public goods production at

any core allocation in the limit. The last section of the paper show that for a more

restricted class of economies, the core does not converge in the intermediate case where

the offer curves are strictly bounded away from both the endowment point and zero.
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