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Abstract

We consider a model in which there is uncertainty over when a one-shot
game will be played. We show how a mechanism designer can implement desir-
able outcomes in certain economic games by manipulating only the probability
that the game is played in a given round while leaving all other aspects of the
game unchanged. We also show that if there is no discounting, this uncertainty
imparts a sequential structure that is almost mathematically equivalent to a
repeated version of the game with discounting. In particular, a folk theorem
applies to such games. Thus, games of probabilistic cheap provide a third in-
terpretation of the repeated game framework with the additional feature that
expected payoff is invariant to the probability of the game ending.

Keywords: Probabilistic cheap talk, implementation, preference revelation,
prisoner’s dilemma, folk theorem .
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1. Introduction

Nash’s (1950, 1951 1953) original program in game theory was a mixture of coop-

erative and noncooperative approaches. Most famously, he considered the outcome of

one-shot simultaneous move games when agents were motivated only by personal gain.

He noted, however, that in many cases this behavioral assumption made it impossi-

ble for agents to coordinate their strategies is ways which would serve their mutual

interests. Nash’s alternative was to suppose that agents were motivated instead by a

sense of fairness as captured by a set of axioms on outcomes. Nash showed that when

agents bargained over the division of spoils in a way that took their ethical beliefs into

account, they could often overcome this problem and achieve efficient solutions.

Taken separately, neither of these approaches is fully satisfactory. On the one hand,

everyday experience suggests that agents often do manage to cooperate a much greater

degree than narrow self-interest would allow. For example, people give to charity and

participate in the electoral process in very high proportions. The finding that agents

do not behave as noncooperative game theory predicts is also strongly confirmed by

experimental evidence.1 On the other hand, economists are rightly loath to give up the

notion that agents are rational maximizers of well defined objectives. This approach

has generated many insights that have been empirically confirmed. Clearly, individuals

do respond to incentives to a large degree, and certainly behave in the aggregate as if

they were narrowly motivated in a wide variety of economic situations.

One way to reconcile these two competing views of behavior is to explore conditions

under which mutually beneficial or ethically motivated behavior can also be rationalized

as serving the personal interests of individuals. The most famous result in this spirit

is probably the Folk Theorem. Fudenberg and Maskin (1986), for example, shows that

for a broad class of one-shot games, if play is infinitely repeated and agents are patient

enough, efficient outcomes become supportable as non-cooperative equilibria. One

immediate problem with this approach is that in many real world situations, repeated

1 See for example Guth et al.(1982).
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play is simply not feasible. For example, awarding a defense contract for a particular

fighter aircraft or collecting contributions from various levels of governments to fund

the building of specific bridge are actions with are essentially one-shot in nature. An

even deeper and more general problem, however, is that the repeated game structure

generates an embarrassment of riches. In addition to the desirable outcomes, the Folk

Theorem tells us that every other individually rational payoff can be supported as

noncooperative equilibrium. Thus, the repeated game framework explains why agents

might cooperate, but does not suggest why this outcome is any more likely than any

other.

This lack of predictive power focused attention on situations in which fair, efficient,

focal, or otherwise desirable outcomes were the only ones which could be supported

by self-interested play. The result was a large literature on mechanism design and im-

plementation theory. Famous early papers include Vickrey (1961), Clark (1971) and

Groves and Ledyard (1971).2 The difficulty with this approach is that the games which

support desirable outcomes are typically quite complicated and often involve catas-

trophic punishments or extreme sensitivity to the actions of a single agent. Moreover,

despite a great deal of time and effort spent developing such mechanisms, their impact

on allocation decisions in the real world has been limited.3

The main focus of this paper is address this issue by exploring a class of sequential

games which arise naturally. We view our approach as complementary to the standard

implementation literature. The implementation tradition considers a mediator who is

uninformed about the preferences and other private information known to the agents,

but who has complete control over the institutions of the mechanism. In particular,

the mediator is typically free to choose the strategy sets and payoff functions of the

agents. Such freedom has given rise to a large number of mechanisms, many of which

2 Also see Jackson and Moulin (1992) for a recent example and a nice survey of the literature.

3 There are exceptions, of course. The auction literature is probably the most important. See McAfee and
McMillan (1987) for example. Also, see Balinski and Sonmez (1999) for a description of a mechanism
that is used to allocate places in Turkish higher education.
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have unnatural strategy spaces and extremely complex payoff rules.4 Our approach, on

the other hand, involves trading off having a minimally informed designer in favor of

having one who has minimal control over economic institutions. The mediator might

know the aggregate benefit of public project, for example, but may be forced to use

the basic voluntary contribution mechanism and be unable to modify this mechanism

to reward or punish agents for choosing particular strategies. Our main result is to

show that if the such a highly constrained designer is allowed the ability to randomly

delay the arrival of payoffs as his sole instrument, then he can still uniquely implement

desirable social choice rules.

At a more formal level, we investigate a class of games which lie on the boundary

between repeated games and games with cheap talk. Agents simultaneously choose

strategies in our model. With some probability, δ, the strategies are payoff relevant

and the game ends. With probability 1 − δ, the strategies are payoff irrelevant, and

each agent observes the strategy choices of all the other agents, which ex post are cheap

talk. Play then moves to a new round, and the process is repeated ad infinitum. The

game ends and payoffs arrive with certainty if we aggregate these probabilities over the

entire time horizon; however, payoffs are actually received once and only once. From

the standpoint of economic resources used, therefore, the game is one-shot. We call

this a game with probabilistic cheap talk (PCT).5

The following example illustrates PCT. Suppose your department is considering

hiring a new assistant professor. The chairman comes into your office and asks you to

serve on the hiring committee. You must accept or refuse this request without knowing

who else has, or will, agree to serve on the committee. Thus, commitments to serve are

4 The concern for more “natural” mechanisms has given rise to a new branch of the implementation
literature where the objective is to find mechanisms which correspond to realistic institutions; see
Dutta, Sen and Vohra (1993), Saijo, Tatamitani and Yamato (1993), and Thomson (1993).

5 Note that in games with cheap talk there are preliminary rounds in which play is fictitious with certainty
followed by a payoff relevant bound. In our case, there is a fixed probability that play is fictitious in
each round up until the game is actually played. This is why we call the structure we explore in the
paper “probabilistic cheap talk”. Note that if we were to set the probability of fictitious play close to
one for a number or rounds, and then change it to zero, this model would look very much like a game
with cheap talk. Nevertheless, we wish to emphasize that the motivation for this paper and the results
we obtain are quite different from those of Crawford and Sobel (1982), Farrell (1982) and others.
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simultaneous and secret. This is a classic prisoners’ dilemma situation. Department

members are asked to contribute to the common good, while their own interests are

best served by not cooperating and free-riding off the efforts of other. The twist here is

that it is not a certainty that the dean will approve funding for the new position. There

is only a probability δ that you will actually end up spending December reading the

CV’s of the candidates. If the dean does not approve funding then the commitment

to serve is ex post cheap talk. The game is repeated in subsequent years until (we

fervently hope) the dean finally gives authorization to make an offer. Clearly, this can

be mapped on to any other situation in which public goods are voluntarily provided.

This example also illustrates that it is not unnatural for a human agent (in this case,

the dean) to control the probability of cheap talk ending. It is not as clear that it

would make as much sense for an agent to control a discount factor. Thus, the PCT

framework leads itself much more easily to mechanism design than the repeated game

framework despite their mathematical similarity.

The plan of this paper is as follows. In section 2, we describe a PCT game formally

and discuss our equilibrium concept. In section 3, we show how to use a PCT game to

implement the proportional cost sharing rule in a public good provision problem. In

section 4, we discuss the relationship between PCT games, and repeated games and

make concluding remarks.

2. The model

We begin by giving a formal definition of an abstract game with PCT. Let N

be the set of agents. Let M i be the set of moves available to agent i ∈ N .6 Let

vi : M1 × . . .×Mn ≡M → <n be the payoff function for i ∈ N . Let G ≡< N,M, v >

denote the corresponding one-shot game. We use m to denote (mi)i∈N and m−i to

6 We consider in the interests of simplicity, we consider only pure strategies here. We discuss this
restriction further after Lemma 1 and 2.
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denote (mj)j∈N\{i}.

Let T be the set of time periods {1, 2, . . .}, and define the random variable X ∈

{CT,DL}, where CT stands for cheap talk and DL stands for deadline. We denote

the PCT extension of a game G as Γ(G, δ) where for each t ∈ T , DL is realized with

probability δ ∈ (0, 1], and CT is realized with probability 1 − δ. At the start of each

period t ∈ T , agents simultaneously choose moves. If DL is realized, the payoffs are

generated for the moves the agents chose. If CT is realized, then the payoffs are not

distributed, the chosen moves are treated as publicly known cheap talk, and the process

is repeated in period t+ 1.

Denote the number of rounds of ex post cheap talk by t ∈ T . The history of talk

at t is denoted by ht. Let H be the set of all possible histories over all t. Let Ht be

the space of all possible histories at time t. We shall set h1 = ∅. A strategy profile for

i ∈ N is a set of mappings s = {sit}∞t=1 with sit : Ht → M i. Let Si be the class of all

possible strategy profiles for agent i and S = ×i∈NSi.

For any agent i ∈ N , participating in a strategy profile s ∈ S yields the following

expected payoff xit : S ×Ht × (0, 1]→ R+ at time t, given history ht:

xit(s, ht, δ) ≡

{
δvi(st(ht)) +

∞∑
k=t+1

δ(1− δ)k−tvi(sk(hk))

}

where the histories after t are generated by equilibrium play of s given ht.

A strategy profile s ∈ S is subgame perfect equilibrium (SPE) of the game Γ(G,∆)

if

∀ t, ∀ i ∈ N, ∀ s̄i ∈ Si, and ∀ ht ∈ Ht,

xit(s, ht,∆) ≥ xit(s1, . . . , s̄i . . . , sn, ht,∆).

In order to develop our equilibrium concept, we next develop definitions about

stationarity. If for some t′ < t the agents have chosen m ∈M in round t′, we shall say

that the resulting history ht contains m at t′. We shall write this as m ∈t′ ht.

DEFINITION: A history h ∈ H is stationary if

∃ m̄ ∈M s.t. h = (m̄, m̄, . . .)
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and ht ∈ Ht, the restriction of h to the first t rounds, ht, is also said to

be stationary if

∃ m̄ ∈M s.t. h = (m̄, m̄, . . . , m̄).

DEFINITION: A strategy s = {st}∞t=1 is said to be partially stationary if

∃ m̄ ∈M s.t. s(h1) = m̄ and ht(m̄, m̄, . . . , m̄), then st(ht) = m̄.

A partially stationary strategy thus generates a stationary history along the equi-

librium path. Off the equilibrium path, however, the moves of agents can be arbitrarily

complicated. In particular, the “punishment strategies” are in no way constrained to

be stationary.

The equilibrium concept used in this paper is Pareto-dominant partially stationary

subgame perfect equilibrium: the set of partially stationary SPE strategies of Γ(G, δ)

whose payoffs Pareto dominate the payoffs of any other partially stationary SPE strat-

egy. Restricting attention to Pareto dominant equilibrium payoffs is motivated by

an appeal to axiomatic logic, but which we leave informal at this stage: if such an

equilibrium exists all agents would agree that it is the most preferred outcome. The

requirement that strategies be partially stationary is in the tradition of Rubinstein and

Wolinsky’s (1984) notion of semi-stationarity in a model of pairwise bargaining, and

Green and Laffont’s (1987) notion of posterior implementable equilibrium in a model

of cheap talk. In both these cases, as in ours, agents receive no payoff until the last

round of play. Thus, the past in any round of play involves only cheap talk, while the

future, as viewed from any round, is identical in expectation. By forcing histories into

just two paths, stationary and deviations from stationarity, in each round t the game

is exactly identical to the game agents face in any other round t′. It can therefore be

an equilibrium to respond with the same strategy choices.7

7 Our equilibrium concept might seem restrictive. It is possible, however, to drop the Pareto dominance
requirement at the cost of adding a “burning money” game on top of the existing structure, as in
Ben-Porath and Dekel (1988), or Fudenberg and Tirole (1991), p.461.
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We define SMM ⊂ S to be the class of trigger strategy profiles in which all agents

play a partially stationary strategy and respond to any deviation from the equilibrium

move by going to a punishment move in all future rounds.

DEFINITION: A strategy profile is a trigger strategy if ∃ m, m̃ such that

sm̄m̃,t(ht) = m̄ if t = 1 or if ht = (m̄, m̄, . . . , m̄), and sm̄m̃,t(ht) = m̃ other-

wise.

Our convention is to have the superscripted move be the one played along the

equilibrium path, and the subscripted move be the punishment move. In this paper,

we are particularly concerned with games that have a prisoners’ dilemma flavor. Such

games typically have a dominant strategy equilibrium which has the property that

when all players save one use this strategy, the payoff to the remaining player is at a

minimum. More precisely, we focus on punishment states in which all players punish a

deviating player conditional on his deviating optimally. We capture this idea formally

in the following definition.

DEFINITION: Let vi ≡ max mimin m−ivi(mi,m
−i). A move m̃ is said to

be a minimizing dominant strategy equilibrium (MDSE) of a game G if it

is a dominant strategy equilibrium and

vi(m̃) = vi

for each i.

Thus, m̃−i imposes the lowest payoff possible on agent i conditional on agent i’s

move.8

Lemma 1. Suppose that m̃ is a MDSE of the game G, and let s be an arbitrary

partially stationary strategy SPE of Γ(G, δ) with an equilibrium message of m̄. Then

the trigger strategy sm̄m̃ is also an SPE of Γ(G, δ).

Proof/

8 We thank an anonymous referee for suggesting this way of defining MDSE.
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Begin by noting that the stationary history of m̄ each period is generated by both

s and sm̄m̃ in equilibrium. Since the aggregate probability that the game ends over the

whole time horizon is one, playing m̄ each round guarantees each agent i ∈ N the same

expected payoff of vi(m̄).

Now suppose agent i considers defecting from this stationary equilibrium pay.

Under sm̄m̃, such a deviation is punished by m̃−i which by construction gives the agent

vi in each period subsequent to this defection. It follows that the best he can do in the

period he defects is to maximize his one period payoff given that the remaining agents

play m̃. Formally the best he can to is to get the expected payoff:

δvi(mi∗, m̄−i)

where

mi∗ ∈ {mi ∈M i | vi(mi, m̄−i) ≥ vi(m̂i, m̄−i) ∀ m̂i ∈M i}.

Now consider the optimal deviation for agent i under strategy s. Note that by

sending the same optimal one-round defection message defined above, he can guarantee

himself expected payoff of δvi(mi∗, m̄−i) in the period he defects. Recall, however, that

m̃ is an MDSE which is played under sm̄m̃ in all subsequent rounds and that this results

in at most the payoff vi to agent i for any message he might send. It follows that

optimal play in subsequent rounds under strategy s must give agent i at least as much

expected payoff each period as he would get when he plays optimally under strategy

sm̄m̃.

We conclude that since the optimal defection yields a weakly smaller payoff to

agent i under sm̄m̃ than s, if s is a Nash equilibrium, then sm̄m̃ must also be one.

It only remains to show that sm̄m̃ is subgame perfect. We have already shown

agents are following best responses in equilibrium. Since by definition, m̃ is a dominant

strategy equilibrium, it is immediate that for any history which leads to agents playing

this strategy, agents must be playing a best response as well.
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Lemma 1 says that if a payoff can be achieved by a partially stationary SPE

strategy, then it can also be achieved by a trigger strategy which punishes nonstationary

play by reverting to a stage-game MDSE if one exists. Thus, when such a one-shot

MDSE exists, we can restrict attention to this class of trigger strategies without loss of

generality. We also remark that we have considered only pure strategies in the interest

of simplifying notation. Provided that agents can observe the actual probabilities or

distributions that agents use in their mixed strategies, nothing in the argument above

depends on this restriction. In fact, in Chakravorti, and Conley and Taub (1996) we

explicitly consider mixed strategies.

3. An Application: Proportional Allocation of Costs of a Public Good

A standard institution for funding a discrete public-good project is to ask for

voluntary contributions. Agents, whose valuations of the public good are hidden and

heterogeneous, are asked to report the benefit they would receive, and the cost is shared

out in proportion to these reports. The outcome is severe under-reporting of benefits

and widespread free riding.

This institution can be described as a one-shot game. The game has a dominant

strategy outcome in which every agents’ pledge is zero, and the good is not provided.

The PCT extension of this one-shot game overcomes this incentive: it uniquely im-

plements the proportional sharing rule, and since it induces agents to report their

valuations truthfully, the costs are shared in accord with the agents’ actual valuations.

The designer, who chooses the termination probability, need only know the sum of the

benefits over all agents in order to find the appropriate δ. Neither the individual com-

ponents nor the true distribution of this aggregate across agents need be observable to

him.

The formal description of the public goods game, Gpg ≡< N,M, v >, is as follows.

Let Bi be the private benefit that agent i receives if the public project is built, and C
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be the cost of the project. We assume that for all i ∈ N, C > Bi > 0, so that no

individual would choose to build the project by himself. For all i ∈ N , M i ≡ <+. An

agent’s message is interpreted as a report of the benefits he receives from the project.

The payoff function for all i ∈ N is:

vi(m) =

{
Bi − C mi∑n

j=1
mj

if ∃ j ∈ N s.t. mj > 0

0 if ∀ j ∈ N,mj = 0.

and so the information of each agent, as well as that of the designer, includes the

total benefits
∑n
j=1m

j , obtained through anonymous demand surveys of samples of

the population, statistical extrapolation, expert consultations, or through aggregate

signals.

Let m̃ = (0, . . . , 0). If the move m̃ is made, the project is not built, and all the

agents pay zero. Since C > Bi for all i, it is immediate that m̃, free riding, is an MDSE

of the one-shot game Gpg, with vi = 0. We start with the following lemma.

Lemma 2. Suppose C ≤
∑n
j=1B

j . Then for δ∗ = 1− C∑n

j=1
Bj
, sm̄m̃ is a partially sta-

tionary SPE of Γ(Gpg, δ∗), if and only if there is k ≥ 0 such that m̄ = (kB1, . . . , kBn).

Proof/

First suppose k = 0. Then by Lemma 1 m̄ = m̃ = (0, . . . , 0). Clearly, sm̃m̃ is an

SPE for any δ since m̃ is the only Nash equilibrium of Gpg.

Now suppose that k > 0. To see that sm̄m̃ is an SPE consider any i ∈ N and any

h ∈ H. This history could have evolved in one of two ways.

Suppose first that the game has not ended at any given t, that ht is stationary,

and that the other agents have been playing kB−i each round. If i makes the optimal

defection from mi = kBi, which is mi = 0, then his expected payoff is δ∗Bi. This

is because he gets the benefit of free riding in round t if the game ends. If the game

does not end at t then all agents report zero in the next round and all future rounds,

resulting in a payoff of zero whenever the game happens to end. On the other hand,

not defecting yields a payoff of Bi − BiC∑n

j=1
Bj

. But by construction,

δ∗Bi =

(
1− C∑n

j=1B
j

)
Bi = Bi − BiC∑n

j=1B
j
.
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Thus, it is a best response for i to play kBi since no additional benefit is gained by

defecting.

Suppose on the other hand that at some t, some agent j were to play m̂j 6= kBj .

Since m̃ is a Nash equilibrium of G, and all agents besides i play m̃−i in all subsequent

rounds, it is a best response for agent i to play m̃i in all subsequent rounds given this

history.

Finally, suppose there is another trigger strategy sm̂m̃, which is an SPE of Γ(G, δ)

such that

6 ∃k > 0 s.t. m̂ = kB.

But then:

∃ i ∈ N, s.t.
m̂i∑n
j=1 m̂

j
>

Bi∑n
j=1B

j
.

Thus:

δ∗Bi =

(
1− C∑n

j=1B
j

)
Bi > Bi − m̂iC∑n

j=1 m̂
j
,

and defecting has a higher expected payoff than abiding by the trigger strategy. This

contradicts the hypothesis that sm̄m̃ is an SPE of Γ(G, δ), and therefore no such SPE

trigger strategy can exist.

Lemma 2 establishes that the only SPE trigger strategies of Γ(G, δ) have all agents

either reporting a profile of messages that are proportional to the true benefit profile

or reporting zero. Thus, if any agent over or under reports his true benefit, it must

be by the same percentage as the over or under reports of all of the other agents in

equilibrium. Theorem 1 shows that even though there is an infinity of SPE, there are

only two partially stationary SPE payoffs. Note also that allowing for mixed strategies

would not materially change this result. This is because the logic of the proof is that

at δ∗, agents are just balanced between defecting and cooperating. Thus, for a mixed

strategy to be supportable as an equilibrium, it would have to give each agent exactly

the same expected payoff as the pure strategies defined above.
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Theorem 1. Suppose C ≤
∑n
j=1B

j . If δ∗ = 1 − C∑n

j=1
Bj
, then the only partially

stationary SPE payoffs of Γ(Gpg, δ∗) are{
(B1 − CB1∑n

j=1B
j
, . . . , Bn − CBn∑n

j=1B
j
), (0, . . . , 0)

}
Proof/

By Lemma 2, sm̄m̃ is an SPE trigger strategy if and only if for some k ≥ 0, m̄ =

(kB1, . . . , kBn). Since m̃ = (0, . . . , 0) is an MDSE, by Lemma 1 the payoffs associated

with these trigger strategies are the only partially stationary SPE payoffs. Since for all

k > 0, the expected payoffs are:(
B1 − CB1∑n

j=1B
j
, . . . , Bn − CBn∑n

j=1B
j

)
,

and for k = 0, the expected payoffs are:

(0, . . . 0),

these are the only partially stationary SPE payoffs.

Finally, we show that regardless of δ, if the sum of the benefits is less than the

cost, building the project is never an equilibrium. This is important if the designer

makes a mistake in estimating the total benefit. It means that bad projects will never

be built regardless of these errors.

Theorem 2. Suppose C >
∑n
j=1B

j . Then for all δ > 0, sm̃m̃ is the only SPE trigger

strategy of Γ(Gpg, δ).

Proof/

Clearly, sm̃m̃ is an SPE since m̃ is the only Nash equilibrium of G.

To see that there can be no other equilibrium note the following. Since C >∑n
j=1B

j , for all m̂ 6= m̃, it must be that for some agent i ∈ N

m̂i∑n
j=1 m̂

j
>

Bi∑n
j=1B

j
,
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since either the reports are in proportion to benefits, or at least one agent’s report is

more than proportionate to his benefit. Also, for all i ∈ N ,

C
Bi∑n
j=1B

j
> Bi

Then for all δ > 0,

δBi > 0 > Bi − BiC∑n
j=1B

j
> Bi − miC∑n

j=1m
j
.

Thus, for all δ > 0, defecting yields positive expected payoff, while abiding by any

trigger strategy other than the one enforcing m̃ yields a negative expected value.

Of the two partially stationary SPE payoffs,(
B1 − CB1∑n

j=1B
j
, . . . , Bn − CBn∑n

j=1B
j

)

strongly Pareto dominates (0, . . . 0). Thus, if the designer knows the sum of the benefits,

he can choose δ such that it uniquely implements the sharing of costs in proportion to

the benefits, in Pareto dominant partially stationary SPE.

4. Discussion and Conclusions.

Remark 1. The proportional-sharing scheme for the division of costs is what is recom-

menced by the Lindahlian tradition of the benefit theory of taxation. The division of

benefits can also be given an axiomatic justification. It turns out that the equilib-

rium payoffs are exactly those suggested by the bargaining solution of by Kalai and

Smorodinsky (1975). We construct the bargain problem as follows: If the project

is worth building, them the total social surplus is
∑
iB

i − C. This surplus can

be linearly transferred by altering the contributions each agent makes on a one for
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one basis. Agents can also refuse to contribute which provides then a payoff of zero.

Therefore the disagreement point is (0, . . . , 0) and the feasible set is given by simplex:∑
i u

i =
∑
iB

i −C. The best a player can expect to do is contribute nothing and free

ride off everybody else’s contributions. Thus, the ideal point is B. All that remains

is to note that the intersection of the chord between the 0 and B gives every agents a

payoff of

(
∑
i

Bi − C)
Bi∑
iB

i
= Bi − C Bi∑

iB
i
,

which agrees with this Lindahlian rule. Since this is payoff is the unique Pareto-

dominant partially stationary SPE equilibrium of the PCT game we describe, we con-

clude that PCT implements the Kalai-Smorodinsky bargaining solution to this cost-

sharing problem in this of noncooperative equilibrium concept.

Remark 2. There is a close relationship between PCT games and repeated games

with discounting. Recall the expected payoff from a strategy for a PCT game. For

any agent i ∈ N , participating in a strategy profile s ∈ S yields the following expected

payoff xit : S ×Ht × (0, 1]→ R+ at time t, given history ht:

xit(s, ht, δ) ≡

{
δvi(st(ht)) +

∞∑
k=t+1

δ(1− δ)k−tvi(sk(hk))

}

where the histories after t are generated by equilibrium play of s given ht. For given

δ, this game is identical in structure to a standard repeated game, because the proba-

bilistic payoff δvi(st(ht)) can just as easily be interpreted as the periodic payoffs of a

repeated game, with 1− δ as the discount factor. It is immediate that we may invoke

a standard folk theorem, which we adapt from Fudenberg and Tirole (1991). Previous

folk theorem results have required the existence of enough resources to play the game

more than once, and the payoffs that are feasible in any given period are exactly the

same regardless of the discount factor. As a result, these existing theorems are not

applicable to situations in which institutional constraints prevent the actual repetition

of a game. When a PCT game is interpreted from the perspective of the folk theorem,

on the other hand, the periodic payoff is δvi(st(ht)), which depends on δ; when agents
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play stationary strategies, the larger “discounting” effect of increasing δ is exactly off-

set by an increase in the implicit periodic payoffs.9Thus, the expected value of playing

stationary strategies is invariant with respect to δ.

To summarize, in Chakravorti, Conley and Taub (1996) we explored probabilistic

cheap talk extensions of the one-shot prisoner’s dilemma game, focusing especially on

how the value of the cheap talk probability affected the shape of the set of subgame

perfect equilibria. We extended this work here in two directions. First, we showed

how applying PCT to a standard example a of voluntary contribution public goods

provision game allow us to implement the Lindahlian cost sharing rule in an extremely

simple and natural way. The mechanism designer need only control the probability that

payoffs are delayed, but otherwise accepts the institution of the voluntary contribution

game as given. Many other examples are possible, and we treat some of these, mainly

from public finance, in Chakravorti, Conley and Taub (1998). In that paper we show

that it is possible to implement the equal sharing of costs rule in a variation of the

voluntary contribution game described above, and also to implement equal sharing of

monopoly profits in the standard Bertrand oligopoly game.

Second, we discuss how the folk theorem applies to PCT extensions of a broad

class of games beyond prisoner’s dilemmas. We also pointed out that this implies

that PCT games provide a different interpretation of the infinitely repeated game with

discounting.

Because of the equivalence of PCT games with repeated games with discounting

and the corollary folk theorem, if we eschew the partial stationarity restriction on the

set of strategies then the unique implementation results achieved here will then no

longer hold. Stahl (1991), and van Damme (1992) demonstrate that for the infinitely

repeated prisoners’ dilemma there is no value of the discount factor for which the set

of Pareto efficient equilibria is a singleton, and without the imposition of stationarity

9 More concretely, in recursive form the expected payoff is xit(s, ht, δ) = δvi(st(ht))+(1−δ)xit+1(st+1, ht+1, δ).

Changes in δ alter the weighting of current versus future payoffs, but in such a way that the expected
payoff is always identical to the set of one-shot payoffs.
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PCT necessarily inherits this non-uniqueness.

It is possible to allow agents to use any strategies (instead of only the partially

stationary ones), and still achieve the partially stationary outcome if we allow the de-

signer slightly more power. Specifically, the designer must be able to observe when any

agent changes his strategy choice from the previous round (although the strategy itself

need not be observed) and to condition the termination probability on this observation.

We explore this approach more thoroughly in our 1996 paper.

Because this construction works, we conjecture that partially stationary PCT is

empirically realistic. Consider a closed-door labor-management negotiation in which

each side has received instructions from their respective principals. A mediator could set

a random termination probability. The mediator cannot typically observe the strategy

of each negotiator, because it is never fully revealed. However, the mediator might

threaten to impose the deadline immediately if either of the negotiators leaves the

room, thereby enabling themselves to receive new instructions—in essence, deviating

from their stationary strategies. Such deviation from stationarity would initiate a

punishment sequence, namely a reversion to a one-shot equilibrium and its consequent

inefficient outcome. By the correct choice of the termination probability along with this

strategy of punishing deviations from stationarity in this fashion, a unique cooperative

outcome can be implemented. As with our public-goods model, the correct termination

probability is determined by the payoff structure of the underlying one-shot game. If

players have a high degree of bargaining power, something we can quantify in the same

way we quantified eagerness in the public goods game, the termination probability is

small. This translates into the expectation of protracted play, as one expects in actual

negotiations between “difficult” bargainers.

The agreement of the parties to this structure of negotiations is thus an a priori

agreement to implement a unique bargaining solution. Public-good projects and multi-

party private investment projects are, correspondingly, often the product of closed-

door negotiation of this sort. We entertain the hope that a more rigorous empirical

examination of PCT in such situations will move bargaining and mechanism design from
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the realm of theory to the realm of description.
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