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Abstract

Rubinstein, Safra and Thomson (1992) introduced the Ordinal Nash Bar-
gaining Solution. They prove that Pareto optimality, ordinal invariance, or-
dinal symmetry, and IIA characterize this solution. A feature of their work is
that attention is restricted to a domain of social choice problems with an infi-
nite set of basic allocations. We introduce an alternative approach to solving
finite social choice problems using a new notion called the Ordinal Egalitarian
(OE) bargaining solution. This suggests the middle ranked allocation (or a lot-
tery over the two middle ranked allocations) of the Pareto set as an outcome.
We show that the OE solution is characterized by weak credible optimality,
ordinal symmetry and independence of redundant alternatives. We conclude
by arguing that what allows us to make progress on this problem is that with
finite choice sets, the counting metric is a natural and fully ordinal way to
measure gains and losses to agents seeking to solve bargaining problems.

Keywords: Bargaining Theory, Non-expected Utility Theory, Cooperative
Games, Ordinal Preferences, Egalitarian Solution, Counting Metric.
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1. Introduction

Nash (1950) introduced the formal notion of a bargaining problem as an ordered

pair (S, d) where S is interpreted as the set of feasible utility payoffs and d as the

disagreement point agents receive if they fail to compromise on an outcome. Nash

assumed that S is a convex set and justified this by imposing the hypothesis that agents’

preferences satisfy the von-Neumann Morgenstern assumptions. A vast bargaining

literature has since emerged, the great majority of which has adopted Nash’s cardinal

axiom of affine invariance of utilities (or scale invariance).

In almost every other area of theoretical economics, only the ordinal content of

preferences is considered. Policy conclusions based on interpersonal comparisons of car-

dinal utility are rightly viewed with suspicion. It would therefore be extremely desirable

to be able to characterize fair allocation procedures that similarly relied only on the or-

dinal information in agents’ preferences. This is difficult, however, as bargaining theory

is fundamentally concerned with balancing the welfare of agents. This strongly invites

such interpersonal comparisons. In fact, Shapley (1969) provided a counterexample for

a two person bargaining problem that showed there does not exist an ordinally invari-

ant, efficient and strictly individually rational (and therefore symmetric) solution for a

broad domain of problems. Interestingly, this counterexample does not seem to extend

to the case of more than two players as shown by Shubik (1982). In fact, a class of

such solutions has recently been characterized by Kibris (2004).

In showing this, Shapley followed Nash in interpreting the pair (S, d) as utility

allocations. Thus, he implicitly used the welfarist axiom that any two problems with

the same image in utility space should have the same solution when he established

his impossibility theorem. This implicit axiom has been criticized in Roemer (1986),

among others. As a result, Shapley’s theorem does not logically exclude the existence of

sensible (as defined by Shapley) ordinal bargaining solutions when the solution concepts

and axioms are defined over the space of fundamental allocations instead of their image

in utility space. 1

1 In rejecting the welfarist axiom, we are explicitly accepting the possibility that two problems that
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In an ambitious paper, Rubinstein, Safra and Thomson (1992) (henceforth, RST)

propose a more general approach. They adopt an abstract framework similar to Nash

and propose an ordinal version of the Nash bargaining solution. They provide a char-

acterization of this ordinal solution for a fairly general class of non-expected utility

preferences. To obtain their results, RST impose the assumption that the feasible set

is “convex”. Convexity in this context is really a joint assumption on the nature of

the feasible set and the class of admissible preferences. It is satisfied for example by

“divide the dollar” problems when the utility functions are concave.

One property of RST’s approach is that it requires that the feasible set have an

infinite number of elements. It does not provide a solution for bargaining problems that

have only a finite set of alternatives or even for problems derived as the set of lotteries

over a finite set of basic alternatives. RST’s approach has also been criticized by Grant

and Kajii (1995) who demonstrate that RST’s assumption of convexity jointly with the

assumption of homogeneity of preferences implicitly induces a cardinal characterization

of the ordinal Nash solution. This is a serious challenge to the motivation that underlies

RST’s approach.

Several other authors have worked on similar problems. Notable contributions

include Dhillon and Mertens (1999) who propose a domain restriction that allows them

to characterize a well defined ordinal utilitarian solution, Hanany and Safra (2000) who

investigate the existence of the ordinal Nash solution, and Safra and Samet (2004) and

Samet and Safra (2005) who construct a class of solutions for problems with more than

two bargainers.

In this paper, we continue the important program of finding solutions to bargain-

ing problems that do not rely on cardinal preferences. In light of Grant and Kajii’s

criticism, we abandon RST’s convexity hypothesis. Since this was a joint assumption

on allocations and preferences, there are two separate dimensions of this relaxation.

First, we drop RST’s assumptions that preferences are “quasiconcave” and substitute

have the same image in expected utility space may have different solutions if the underlying set of
fundamental alternatives happens to differ. See also Sakovics (2004).
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a requirement that they be “quasiconvex” instead. Basically, quasiconvexity requires

that agents weakly prefer a lottery ` to a compound lottery of ` and `′ where ` ∼ `′. In

a sense, this is saying that less uncertainty is better. We argue below that the exper-

imental evidence supports quasiconvexity more than quasiconcavity. Second, we drop

the requirement that the fundamental space of outcomes is convex and instead require

that the set of alternatives is, in fact, finite.2

Finite bargaining sets seem to arise quite naturally in a number of contexts. Con-

sider, for example, assignment or matching problems (people to jobs, professors to

course offerings, families to houses, firms to broadcast or bandwidth licenses) or any

problem in which there are natural increments in the allocations (auctions with mini-

mum bid increments, parcels of land or lots of goods that must be allocated as whole

units are good examples; even in the divide the dollar game, one cannot give agents

fractions of pennies). Thus, problems with finite underlying feasible sets may even be

more of the rule than the exception.

Given that many choice problems do involve a finite set of real alternatives, one

has a choice of settling either on one of these alternatives or instead on one of the

uncountably infinite lotteries over these basic alternatives. Both approaches have their

merits. Settling on a non-random solution that satisfies an appealing set of axioms

means that the outcome will satisfy the axioms both ex-ante and ex-post.3 We treat

the case in which lotteries are excluded in section 2, below. In contrast, if a lottery

is proposed as a solution, the outcome will satisfy the axioms, ex-ante, but not ex-

post after the lottery has been resolved and the agents take home their winnings. On

the other hand, one has to acknowledge that lotteries are in fact feasible choices, and

thus, perhaps, should not be a priori excluded as solution outcomes. This becomes

complicated if preferences are purely ordinal and, in particular, do not necessarily

satisfy Savage’s independence axiom. We treat this more difficult case in section 3.

2 See for example Mariotti (1998) who considers a domain of finite bargaining problems and offers a
mulitvalued solution that retains a degree of cardinality.

3 See Conley and Wilkie (1996) for additional discussion on this point.
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Our main contribution is to define and characterize the Ordinal Egalitarian so-

lution. Basically, this takes either the middle ranked point in the Pareto set, or the

50/50 lottery over the two middle ranked points as the solution to any finite bargaining

problem. We show that when agents are ordinally risk averse (and preferences satisfy

other standard domain restrictions), the OE solution is characterized by symmetry,

independence of redundant alternatives and weak credible optimality. The ordinal risk

aversion assumption is consistent with the “mixed fanning” result that Harless and

Camerer (1994) found to have the best predictive properties in experimental tests of

behavior under uncertainty. If we restrict the domain of preferences further to require

that agents are ordinally risk neutral, then weak credible optimality can be replaced

by weak Pareto optimality in the characterization.

2. The Ordinal Egalitarian Solution with Nonprobabilistic Outcomes

To illustrate our solution concept, we begin by considering a very simple class

of problems in which we allow only deterministic outcomes. In the next section we

generalize the domain and introduce lotteries. Each agent i has an ordinal preference

ranking �i over an abstract space of concrete alternatives which we denote A. We

assume that for all i = 1, 2 that �i is complete and transitive and derive the strong

preference and indifference relation from the weak relation in the ordinary way.

A social choice problem S ⊂ A is a selection from the basic set of social alternatives.

In this paper we consider the class of two agent choice problems Σ which satisfy three

properties.

1. For all S ∈ Σ, it holds that S contains a finite set alternatives.

2. If S ∈ Σ, for all Ŝ such that Ŝ ⊆ S, it holds that Ŝ ∈ Σ.

3. For all x, y ∈ S such that x 6= y and all i = 1, 2, either x �i y or y �i x. (That is,

preferences are strict.)
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A social choice solution in this context is a single-valued map f : Σ→ A such that

for all S ∈ Σ it holds that f(S) ∈ S.

Note that we will not need to define a disagreement point in this paper. This is

driven by the fact that we make purely ordinal comparisons of relative losses when

defining our solution and so do not need to measure them with respect to a fixed

alternative.

With no lotteries, the Pareto optimal set consists simply of those alternatives that

are not Pareto dominated by other alternatives. We will use the superscript nl in

this section to remind ourselves that our axioms are defined in a way that disregards

lotteries.

POnl(S) ≡ {x̂ ∈ S |6 ∃ x ∈ S s.t. ∀ i = 1, 2 x �i x̂}.

Pareto Optimalitynl (POnl): For all S ∈ Σ it is the case that f(S) ∈ POnl(S).

We will need several preliminaries before we define our notion of symmetry. Roughly,

a choice set is symmetric if the good and bad alternatives for each agent are in some

sense equal. To make this more precise, we need to know for any given choice set S ∈ Σ

and x ∈ S, how many alternatives exist in the S that are strongly preferred by each

agent. Formally, we define the Cardinality of the Preferred Set for agent i as follows:

CPSi(x, S) ≡ { | T | where y ∈ T if and only if y ∈ S, and y �i x}

where | T | denotes the cardinality of the set T .

Next, we need to know the ordinal ranking of the Pareto set for each player.

Given the domain restriction that preferences are strict, this ranking is unambiguous.

Formally, the rank of a Pareto Optimal alternative x ∈ POnl(S) for agent i is the

following:

RANKi(x, S) ≡ CPSi(x, POnl(S)) + 1
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In words, we will say a set is Ordinally Symmetric if for any r, the rth most

preferred alternative on the PO set of each of the agents has exactly the same number

of alternatives in the feasible set that are strongly preferred. Obviously, this is a very

strong hypothesis, and so few sets will be ordinally symmetric. In particular, it is always

possible to destroy the ordinal symmetry of any set by adding a single point. Note,

however, that any problem consisting only of a Pareto set (with no Pareto dominated

points) is automatically ordinally symmetric. Formally:

Ordinal symmetrynl: A problem S ∈ Σ is ordinally symmetricnl if for all

x, y ∈ POnl(S) such that RANK1(x, S) = RANK2(y, S) it holds that

CPS1(x, S) = CPS2(y, S).

A solution concept satisfies the axiom of Symmetrynl if the solution to every ordinally

symmetric set is symmetric.

Symmetrynl (SYMnl): If S ∈ Σ is is ordinally symmetricnl, then CPS1(f(S), S) =

CPS2(f(S), S).

We will use a weaker version of symmetry in the next section. The final axiom we need

is called Invariance to Pareto Irrelevant Alternativesnl. It simply says that if two sets

of social alternatives have the same PO sets, then the solutions should be the same.

Note that this implies PO, so we will be able to drop this axiom in our characterization.

Invariance to Pareto Irrelevant Alternativesnl (IPIAnl): For all S, S′ ∈ Σ if

POnl(S) = POnl(S′) then f(S) = f(S′).

We begin by defining our solution on a restricted domain in which the Pareto set

has an odd number of elements. This makes the characterization extremely transparent.

In the next section, we generalize this. Call this domain Σodd

Σodd ≡ {S ∈ Σ | | PO(S) | is odd }.

Give that the Pareto set is odd, the Ordinal Egalitarian solution is defined as

follows:
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OEnl ≡
{
x ∈ PO(S) s.t. ∀ i = 1, 2, RANKi(x, S) =

| PO(S) |
2

+ 1
2

}
This solution concept can be motivated as an iterative veto solution (see Anbarci

1993 who shows the relationship between the non-cooperative Iterative Veto Solution

and Area Monotone Solution described in Anbarci and Bigelow 1994). We can imagine

agents agreeing that they will settle on a Pareto optimal outcome, and then deciding

which one by iteratively vetoing their least favorite remaining Pareto alternative. This

process continues until another round of vetoes would leave no alternatives left. This

rule is in the class of Unanimity Compromise solutions studied in Brams and Kilgour

(2001) and Kibris and Sertel (2007). In particular, because the solution is restricted

to be a selection from the set of Pareto optimal and Individually Rational points it

corresponds to the Imputational Compromise Solution studied in Kibris and Sertel

(2007) which is related to the Equal Length Solution axiomatized in Thomson (1996).

The major difference between the papers above and the current work is that we

focus on single valued instead of multivalued solution concepts. We do so in this section

by restricting the domain to finite problems having an odd numbered Pareto sets which

in turn allows us to give a very concise characterization.

One should especially note the relationship between the solution defined in this

section with the one defined in Sakovics (2004). Both solutions are single-valued, and on

the domain of problems with odd Pareto sets, choose the same outcome. Sakovics does

not provide a characterization of his solution. In addition, the solutions are different

on the more general domain defined in the next section. In particular, the Sakovics

solution chooses the most preferred outcome of agent 1 if there are two middle points

instead of the 50/50 lottery. Thus, the Sakovics solution in not symmetric in general.

Of course it would be interesting to have a 50/50 lottery over which agent is to be

favored when there are two middle points (as a referee suggests), and regain a kind of

symmetry as a result. However, we are not sure how exactly one would capture this

axiomatically. Sakovics also discusses extending this solution to social choice problems

with infinite feasible sets. This is a very intriguing idea if one has a non-cardinal way
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to measure an infinite set of choices for the purposes of comparing them to one another

(as one has with the counting metric).

While we think that the deterministic solution proposed in this section is interest-

ing (especially since the outcome it suggests satisfies the proposed axioms both ex-ante

and ex-post, as we discus in the introduction), the main contribution of the current pa-

per is to extend this single-valued solution concept to more general finite domains. The

challenge is to allow the use of lotteries both to define the Pareto set and as solution

outcomes while providing a purely ordinal characterization of the resulting solution

concept. We elaborate on this point in the next section.

We now show our characterization:

Theorem 1. A solution on the domain Σodd satisfies SYMnl and IPIAnl if and only

if f = OEnl.

Proof/

We start by showing that the OEnl satisfies the two axioms.

SYMnl: Suppose that S is ordinally symmetric and so for all x, y ∈ PO(S) such that

RANK1(x, S) = RANK2(y, S) it holds that CPS1(x, S) = CPS2(y, S). The solu-

tion x = OEnl(S) is in PO(S), and RANK1(x, S) = RANK2(x, S) = | PO(S) |
2 +

1
2 . Thus, CPS1(x, S) = CPS2(x, S).

IPIAnl: Since OEnl takes the middle point of the PO set as the solution, all problems with

the same PO set must have the same solution. Thus, for all S, S′ ∈ Σodd such that

POnl(S) = POnl(S′), it holds that f(S) = f(S′).

Next we show that if a solution satisfies the axioms, then it must be the ordi-

nal egalitarian solution. Consider any S ∈ Σodd, and let Ŝ ≡ PO(S). Note that Ŝ

is ordinally symmetric by construction and so SYMnl implies that CPS1(f(Ŝ), S) =

CPS2(f(Ŝ), S). But since every point in Ŝ is PO, the only point for which this condi-

tion is satisfied is the middle ranked element of the Pareto set. Thus, f(Ŝ) = OEnl(Ŝ).

Since by construction, however, it is also the case that POnl(S) = POnl(Ŝ), OEnl(S) =

OEnl(Ŝ) and by IPIAnl we conclude that f(S) = f(Ŝ) = OEnl(Ŝ) = OEnl(S).
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We close this section by noting that if we drop SYMnl, the dictatorial solution

that selects person 1’s most preferred point satisfies IPIAnl. On the other hand, if we

drop IPIAnl, we can define a solution which takes the lowest Pareto ranked symmetric

point, if this is unique, and the OEnl solution otherwise. Thus, the two axioms are

independent.

3. Extending the Ordinal Egalitarian Solution to Lotteries.

Extending this characterization to allow lotteries in a way that preserves its or-

dinallity turns out to be subtle and requires us to explore the approaches used in

nonexpected utility theory and decision theory. In this section we lay out the prelim-

inaries that will eventually allow us to characterize the ordinal egalitarian solution in

the space of lotteries over finite choice sets. We will also discuss a number of related

approaches in the literature. This will provide motivation for the specific domain and

axioms we use in our own characterization. We conclude with our characterization of

the ordinal egalitarian solution. We begin with some notation.

Denote the set of lotteries over the set of alternatives in a social choice problem

as L(S). A particular lottery is denoted ˆ̀ = (p̂1, . . . , p̂k; ẑ1, . . . , ẑk) ∈ L(S) where

(p̂1, . . . , p̂k) � 0 is a strict probability mixture and for j = 1, . . . , k, ẑj ∈ S. Where it

will not cause confusion, we will sometimes write µ`+(1−µ)ˆ̀ to represent a compound

lottery over two lotteries, px + (1 − p)z to represent the simple lottery between two

certain alternatives, and x to denote the trivial lottery over a single point. It will also

be useful to know the alternatives that form the support for a given lottery. We denote

this as follows:

Supp(`) ≡ {(z1, . . . , zk) ⊆ S where ` = (p1, . . . , pk; z1, . . . , zk)}.

A social choice problem is now a pair (S,�) where S ⊂ A and �≡ (�1,�2) is a

pair of preference relations each defined over L(S). Given a domain of problems Σ, a
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social choice solution in this context is a single-valued map F : Σ → L(A) such that

for all S ∈ Σ it holds that F (S,�) ∈ L(S).

In order to characterize any solution over the space of lotteries, we will need to im-

pose a few weak regularity conditions on the preferences of agents. Note, however, that

these conditions do not force preferences to be cardinal. In particular, our assumptions

are much weaker than those required for expected utility to hold.

We will assume that �i is a complete and transitive preference relation over the

space of all lotteries over all social choice problems in the domain for agent i. We will

also require the following domain restrictions on these preferences.

Archimedean Axiom (AA): For all i = 1, 2, all (S,�) ∈ Σ and all x, y, z ∈ S

such that x �i y �i z and x �i z, there exists a unique p ∈ [0, 1] such

that px+ (1− p)z ∼i y.

First Order Stochastic Dominance (FOSD): For all i = 1, 2, all (S,�) ∈ Σ, and

any z1, z2 ∈ S such that z1 �i z2, then for any ` ∈ L(S), if 1 ≥ p > q ≥ 0,

`′ = pz1 + (1− p1)`, and ˆ̀= qz2 + (1− q)`, then `′ �i ˆ̀.

Note that since we assume that the fundamental points are strictly ordered, we

use the strict preference ordering in our definition of FOSD.

RST impose the requirement that preferences over lotteries be quasiconcave. This

assumption together with their convexity hypothesis ensured the existence and unique-

ness of the Nash solution. However, quasiconcavity is unappealing as experimental

evidence suggests that preferences are more likely be quasiconvex than quasiconcave

(see the surveys of Camerer 1989 or Starmer 1992.) Moreover, as Grant and Kajii

(1995) point out, the quasiconcavity hypothesis added to the other requirements that

RST impose on preferences is quite restrictive. Together, these assumptions rule out

much of the behavior that motivates nonexpected utility models. We will require in-

stead that preferences satisfy:

Quasiconvexity (QC): For all i = 1, 2, all (S,�) ∈ Σ and all `, ˆ̀ ∈ L(S), if

` �i ˆ̀, then for all µ ∈ [0, 1] it holds that ` �i µ`+ (1− µ)ˆ̀.
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Let Σ0 denote this base class of problems for which preferences satisfy the AA,

FOSD, and QC axioms.

The intersection of quasi-concave and quasi-convex preferences are those that sat-

isfy the betweenness property, see Fishburn (1983), Dekel (1986), Chew (1989) and

Karni and Schmiedler (1991).

Betweenness (B): For all i = 1, 2, all (S,�) ∈ Σ and all `, ˆ̀∈ L(S), if ` ∼i ˆ̀,

then for all µ ∈ [0, 1] it holds that ` ∼i µ`+ (1− µ)ˆ̀.

Let ΣB ⊂ Σ0 denote the class of bargaining problems where preferences satisfy the

betweenness axiom.

RST also impose an axiom called Conditional Substitution of Certainty Equivalents

(CCE) and a weakening called CCE∗. Karni and Schmiedler (1991) refer to CCE∗ as

the axiom Substitution of Certainty Equivalents. We will also use an axiom similar to

CCE.4

Ordinal Risk Aversion (ORA): For all i = 1, 2, all (S,�) ∈ Σ, all x ∈ S

and y ∈ S, let ` = (p1, p2, z1, z2) ∈ L(S), and `′ = (q1, q2, z1, z2) be

such that x ∼i ` and y ∼i `′. Then for all µ ∈ [0, 1] it holds that

µx+ (1− µ)y �i µ`+ (1− µ)`′i.

Let ΣA ⊂ Σ0 denote the class of problems that satisfy the ORA axiom.

The ORA axiom can be interpreted as an aversion to mean preserving spreads.5

In particular, it states that if we replace the lottery components of a compound lottery

with their certainty equivalents then this simple lottery is weakly preferred. Note

that the simple lottery has, in terms of the ordinal preference ranking, a range that is

contained in the range of the compound lottery. Of course, the motivation for assuming

4 We remark that ORA implies the following weak version of QC: ∀(S,�) ∈ Σ and ∀ x ∈ S, if x ∼i
ˆ̀, then ∀µ ∈ [0, 1] it holds that x �i µx+ (1− µ)ˆ̀.

5 Rothchild and Stigliz (1970) show that cardinal risk aversion is equivalent to a dislike of mean preserving
spreads. Following this tradition, we describe a dislike of median preserving spreads as ordinal risk
aversion. Note that the standard expected utility ”independence” axiom implies that ORA holds (in

fact, it would imply µx+ (1− µ)y ∼i µ`+ (1− µ)`′i).
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that agents are risk averse is long established in the economics literature and will not

be repeated here.

Note that the ORA axiom only requires that lotteries over two certain points are

at least as good as the same lottery over certainty equivalent lotteries whereas the CCE

axiom requires that lotteries over two certain points are at least as good as the same

lottery over one of those points and a lottery equivalent to the other. Thus, there is

no formal relation between CCE and ORA. Note that ORA also has similarities to the

reduction axiom used in Segal (1990).

It is important to know that the domain of preferences we study is not empty.

Consider the “Machina (1984, 1987) triangle” case of lotteries over three alternatives,

a, b, c with a � b � c (See Figure 1). The lottery l∗ is the simple mixture over

a, c that is indifferent to the degenerate lottery b. Notice that preferences exhibit

the “fanning out” characteristic as we move from b toward a (these “start” from x),

but the “fanning in” property as we move from b toward c (these “start” from y).

Interestingly this is exactly the behavior that is most consistent with the experimental

data, see for example Harless and Camerer (1994) or Starmer (1992). Based on this,

the following provides an example of a class of nonexpected utility preferences that

satisfy the ORA and QC axioms (and of course, AA and FOSD). Let S = {a, b, c}

and suppose that a � b � c. Let ` = (pa, pb, pc, a, b, c). Now consider preferences with

the following utility representation U(`) =
∑
z∈S fz(`)uz where fc(`) = pc, fb(`) =

pb, fa(`) = (pa)2/(1 − pb),and uc = 0, ua = 1, ub = α2 where b ∼ (α, 1 − α; a, c). The

interpretation of these preferences is as follows: any compound lottery can be thought

of as a compound lottery between the degenerate lottery b and a lottery between a

and c. Therefore, an agent will get either the median outcome b, or face a lottery

between the good outcome, a, and the bad outcome, c. Conditional on not getting b

the decision maker “discounts” the good outcome, a. It is straightforward to verify

that these preferences satisfy the axioms.

Figure 1 about here
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In the following, we also sometimes make use of the stronger axiom of Ordinal

Risk Neutrality.

Ordinal Risk Neutrality (ORN): For all i = 1, 2, all (S,�) ∈ Σ, all x ∈ S

and y ∈ S, let ` = (p1, p2, z1, z2) ∈ L(S), and `′ = (q1, q2, z1, z2) be

such that x ∼i ` and y ∼i `′. Then for all µ ∈ [0, 1], it holds that

µx+ (1− µ)y ∼i µ`+ (1− µ)`′i.

Let ΣN ⊂ ΣA ⊂ Σ0 denote the class of problems that satisfy the ORN axiom.

At last we are ready to extend the axioms that characterize our solution to permit

the use of lotteries. Of course, this implies that the weak Pareto set is now a set of

lotteries:

WPO(S,�) ≡ {ˆ̀∈ L(S) |6 ∃ ` ∈ L(S) s.t. ∀ i = 1, 2, ` �i ˆ̀}.

Weak Pareto Optimality (WPO): for all (S,�) ∈ Σ, it is the case that

F (S,�) ∈WPO(S,�).

It will be useful to know the set of basic alternatives that form the Support of the

Pareto optimal Set of lotteries. We denote this as follows:

SPS(S,�) ≡ {x ∈ S | ∃ ˆ̀∈WPO(S,�) and x ∈ Supp(ˆ̀)}.

It will also be useful to know the set of basic alternatives (degenerate lotteries) that

are Pareto Optimal. Call this the Degenerate Pareto Optimal set.6

DPO(S,�) ≡WPO(S,�)
⋂
S.

To define symmetry in the context of a finite ordinal social choice problem, we

begin with the notion of a symmetric permutation operator.

6 Please note the remark given after WCO is defined below.
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Symmetric permutation operator (SPO): A one-to-one mapping of a social choice prob-

lem into itself, φ : S → S is a symmetric permutation operator if for all x, y ∈ S it

holds that y = φ(x) if and only if x = φ(y) and for all x, y ∈ S and i 6= j, x �i y if and

only if φ(x) �j φ(y). 7

A lottery ˆ̀ is said to be the symmetric permutation of the lottery ` under an SPO

φ if for all elements x in the support of ` there exists x̂ = φ(x) in the support of ˆ̀ and

in addition p̂ = p. A lottery ` is said to be a fixed point under the SPO φ if φ(`) = `.

Ordinally Symmetric Problem: A problem (S,�) ∈ Σ is ordinally symmetric if there

exists an SPO φ such that for all x, y if y = φ(x) then ` �1 (resp. �2) x if and only if

φ(`)) �2 (resp.φ(`)) �2 y)y.8

Given this, following Grant and Kajii (1995), we define our Symmetry axiom as

follows:

Symmetry (SYM): For all S ∈ Σ such that S is ordinally symmetric with

respect to a symmetric permutation operator φ, it holds that F (S,�) is

a fixed point of φ.

Note that we could also characterize our solution using a generalized version of the

symmetry axiom used in the previous section (which excluded lotteries). Specifically,

we could require that if a problem is ordinally symmetric in the sense used in section 2,

then the solution must be a symmetric lottery (that is a lottery over ordinally symmetric

points). We think the Grant and Kajii axiom is more natural, however, and prefer to

stick to existing axioms as much as possible.

Next, we give an axiom in the spirit of invariance to Pareto irrelevant alternatives

called Independence of Redundant Alternatives. The axiom is adapted from Dhillon

and Mertens (1999) who use it in their characterization of relative utilitarianism. The

7 It is not hard to show that the SPO that respects the preference ordering of the two agents is unique.

8 Interested readers may contact the authors for a working paper version of this manuscript that includes
a discussion of alternative definitions of symmetry.
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intuition for the axiom is welfarist in nature. It suggests that if an alternative that

was not chosen is no longer available but a perfect substitute lottery remains available,

then the solution should not change.

Independence of Redundant Alternatives (IRA): Consider any pair of social

choice problems (S,�), (S′,�′) ∈ Σ such that S′ ⊂ S, and let �′ be the

restriction of � to S′. If DPO(S,�) = DPO(S′,�′) then F (S,�) =

F (S′,�′).

Next we propose the following definition of optimality:

WCO(S,�) ≡ {` ∈ L(S) | (i) Supp(`) ⊆WPO(S,�), and

(ii) if ∃ `′ ∈ L(S) s.t. `′ �i ` for i = 1, 2 and

`′ �i ` for some i, then ∃ x ∈ Supp(`′), s.t. x 6∈WPO(S,�)}.

We say that a solution satisfies Weak Credible Optimality if it selects an outcome from

this set:

Weak Credible Optimality (WCO): For all (S,�) ∈ Σ, F (S,�) ∈WCO(S,� ).

If ` 6∈WCO(S,�) then we will say that ` is credibly dominated by some `′.

We conclude this section with two brief remarks:

Remark 1: Note that since any WPO point in S is undominated, it is also not

credibly dominated. Thus, we could just as well have defined DPO, above, as the

intersection of WCO(S,�) and S without changing the composition of the set. This

is important as it means that the definition of the ordinal egalitarian solution and the

axiom IRA used in its characterization is consistent with either view of optimality.

Remark 2: Also note that if preferences satisfy the von-Neumann Morgenstern

independence axiom then F satisfies WCO if and only if it satisfies ex-ante Pareto

optimality. Interested readers may ask the authors for an extended version of this

paper in which this claim is proved.
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Our objective is to provide a solution on our domain which is egalitarian in nature.

The most natural thing to do in this spirit is to take either the middle ranked point in

the Pareto set (as in section 2, above) or if the Pareto set is even, the 50/50 lottery

over the two middle ranked points. Formally:

OE(S,�) ≡


x ∈ DPO(S,�) s.t. ∀ i = 1, 2,

RANKi(x, S) = |DPO(S,�) |
2 + 1

2 if |DPO(S,�) | is odd

`∗ = ( 1
2 ,

1
2 , x, y) ∈ DPO(S,�) where

RANK1(x, S) = RANK2(y, S) = |DPO(S,�) |
2 if |DPO(S,�) | is even

With these preliminaries we now provide two characterization theorems. Theorem

2 applies to the domain of problems in which agents’ preferences satisfy ordinal risk

aversion. For this domain, symmetry, weak credible optimality and independence of

redundant alternatives characterize the ordinal egalitarian solution. We have relegated

the proofs to the appendix.

Theorem 2. A solution on ΣA satisfies SYM , WCO and IRA if and only if F = OE.

Proof/

See appendix

Finally, if we are willing to further restrict the domain of preferences to those

satisfying ordinal risk neutrality, the characterization can be strengthened to include

full WPO instead of WCO.

Theorem 3. A solution on ΣN satisfies SYM , WPO and IRA if and only if F = OE.

Proof/

See appendix.
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4. Conclusion

It is probably not surprising that the great majority of the literature on axiomatic

bargaining theory relies to some extent on cardinal foundations. This is because the

fundamental problem is to propose a balancing of welfare gains and/or losses over

agents. Doing so without making at least implicit interpersonal comparisons of utility

over agents is therefore very difficult.

This paper suggests that this problem is compounded by the insistence on includ-

ing convex and therefore infinite choice sets in the domain of problems. It is extremely

unclear how to compare the relative losses to agents when each is compromising by

giving up an infinite (usually, uncountably infinite) number of preferred alternatives.

Infinities (of the same order) are all equivalent and so one must use other more subjec-

tive metrics to compare gains or losses from any given compromise point.

When the choice set is finite, however, there is a very natural and fully cardinal

metric available: the counting metric. We can simply count the number of preferred

alternatives that each agent gives up to reach a compromise. As we argued in the

body of the paper, finite underlying choice sets are at least as natural and perhaps

more natural that infinite ones. Many real world problems are fundamentally discrete

(who should I marry, what job should I take, where should I live?) and even those we

commonly approximate as continuous may have some degree of granularity as a matter

of practice (almost any division of wealth problem is subject to a minimum currency

unit constraint). Of course, lotteries do introduce a kind of continuity in the outcome

space; however, as long as the underlying choice is finite, the counting metric is still

available to us.

We define and characterize the most obvious bargaining solution suggested by the

counting metric: equal ordinal sacrifice of preferred allocations. More formally, the

ordinal egalitarian solution is the middle ranked point in the Pareto set, if it exists,

and the 50/50 lottery over the two middle ranked points if it does not. We show that

if preferences satisfy ordinal risk aversion, the OE solution is characterized by weak

credible optimality, ordinal symmetry and independence of redundant alternatives. We
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also show that if we strengthen this to an assumption that preferences satisfy ordinal

risk neutrality, the OE solution is characterized by weak Pareto optimality, ordinal

symmetry and independence of redundant alternatives.

Appendix

We begin with some preliminary results. The following lemma shows that if a
lottery is Pareto dominated by another, there must also exist a simple lottery over
exactly two alternatives that is Pareto dominant.

Lemma 1. On Σ0 let ` 6∈WPO(L(S),�) then there exists a lottery `′ where | supp(`′) | ≤
2 which Pareto dominates `.

Proof/
We want to show that if a lottery ` is weakly Pareto dominated by any lottery, there

exists another lottery with at most two allocations in its support that will also dominate
`. To see this, suppose that ` is dominated by a lottery ¯̀= (p̄1, . . . , p̄n, z̄1, . . . , z̄n) where
n > 2. Note that (p̄1, . . . , p̄n) is in the relative interior of the n−1 dimensional simplex.
Define the set of weakly inferior probability mixtures over (z̄1, . . . , z̄n) under agent 1’s
preferences as:

W1(¯̀,�) ≡ {(p̂1, . . . , p̂n) ∈ ∆n−1 | ¯̀�1
ˆ̀}.

Note that by QC and FOSD, W1(¯̀,�) is convex.
Recall that by assumption, S is strictly ranked by both agents. Let (z̄1, . . . , z̄n)

be an ordered list of elements in the support of lottery ¯̀ by agent 1 where zn is the
least preferred point. Then by FOSD µz̄n + (1 − µ)¯̀ ∈ W1(¯̀,�) for µ ∈ [0, 1] Thus,
W1(¯̀,�) has a nonempty interior.

It follows that there exists a hyperplaneH(p, α) that supportsW (¯̀,�1) at (p̄1, . . . p̄n).
By construction, if (p̃1, . . . , p̃n) ∈ H(p1, . . . pn, α), then ˜̀�1

¯̀. Since (p1, . . . , pn, α) ∩
∆n−1 is a polyhedron, any point in this intersection can expressed as a weighted sum
of the polyhedron’s extreme points. Note that these points lie on the boundary of
the simplex and are therefore lotteries over at most n − 1 allocations. Also note that
they can be weakly ranked by �2. Let this ranking be `1, `2, . . . , `k. By QC and
FOSD, we know that `1 �2

¯̀. However, since H(p1, . . . , pn, α) supports W1(¯̀,�) and
`1 ∈ H(p1, . . . , pn, α), `1 �1

¯̀ . This implies that there exists a lottery supported by
at most n− 1 points which is at least as good to both agents as ¯̀ and which therefore
Pareto dominates `. Since the same argument can be applied for all n > 2, we conclude
that there also exists a lottery with at most two allocations in its support that Pareto
dominates `.
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We use this to prove our next series of lemmas which demonstrate that our solution
satisfies the axioms. We begin with the axiom of Weak Credible Optimality.

Lemma 2. On ΣA, the OE solution satisfies WCO.

Proof/
Let (S,�) ∈ ΣA be given. First observe that by construction if x ∈ supp(OE(S,� ))

then x ∈ DPO(S,�) and so condition (i) of WCO is satisfied. To check the second
condition we consider two cases.

(1) If the cardinality of the set DPO(S,�) is odd, then by definition OE(S,�) is
a nonrandom allocation and OE(S,�) = x ∈WPO(S,�) ⊆WCO(S,�).

(2) If the cardinality of DPO(S,�) is even, then OE(S,�) = `∗ = ( 1
2 ,

1
2 , x, y),

where RANK1(x, S) = RANK2(y, S) = | SPS(S) |
2 . If `∗ 6∈ WCO(S,�), however,

then there must exist a Pareto optimal lottery ¯̀ which dominates it with Supp(¯̀) ⊆
WPO(S,�). Without loss of generality, we assume that agent 1 strictly prefers the
lottery ¯̀ in the following. We consider two subcases.

a. Suppose first that ¯̀ is a degenerate lottery that places all weight on some allocation
z. We also know that z is Pareto optimal and preferred by both agents to `∗. Thus,
for both agents, it cannot be the case that z is inferior to both x or y at the same
time as this would violate FOSD. Suppose that one of the following ranking holds:
x �1 z �1 y, and y �2 z �2 x, or the reverse. This, however, would violate the
hypothesis that `∗ is the OE solution since z would then be the middle ranked
point by both agents and so would be the OE solution instead.
The only other possibility is the case that z is preferred to both x and y under
both agents’ preferences. Then z Pareto dominates x and y which contradicts the
hypothesis that they are elements of WPO(S,�).

b. Now suppose that ¯̀is a nontrivial lottery. By Lemma 1 we can assume without loss
of generality that this has exactly two elements in its support, ¯̀= (λ, 1− λ; z, w),
which by Lemma 1 are both Pareto optimal. We also know that points in the
support of ¯̀ must be inversely ranked by the agents (since they are in the Pareto
set). Since x and y are the support of the OE solution they must be in the middle
of each agent’s ranking of the Pareto sets. As a result, FOSD allows us to conclude
that z �1 x �1

¯̀�1 y �1 w and w �2 y �2
¯̀�2 x �2 z.

Now, by AA, we know that the following lotteries are well defined:

`x1 = (µ1, 1− µ2; z, w) ∼1 x

`y1 = (ν1, 1− ν1; z, w) ∼1 y

`x2 = (µ2, 1− µ2; z, w) ∼2 x

`y2 = (ν2, 1− ν2; z, w) ∼2 y.

We claim that µ1 ≥ µ2 and ν1 ≥ ν2. Consider the first inequality and suppose
instead that µ1 < µ2. By FOSD applied to agent 2, it is immediate that `x1 �2 `

x
2 .
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This would imply that `x1 weakly Pareto dominates x, contradicting the hypothesis
x is Pareto optimal. A symmetric argument applies to the second inequality. Note
that this implies:

1
2 (µ2 + ν2) ≤ 1

2 (µ1 + ν1).

By ORA applied to player 1, we know that ( 1
2 ,

1
2 , x, y) = `∗ �1 ( 1

2 ,
1
2 , `

x
1 , `

y
1). By

hypothesis, ¯̀�1 `
∗, so by FOSD we have that λ > 1

2 (µ1 + ν1). By ORA applied
to player 2 we have that ( 1

2 ,
1
2 ;x, y) = `∗ �2 ( 1

2 ,
1
2 ; `x2 , `

y
2). By hypothesis, ¯̀�2 `

∗,
and so by FOSD we have that λ ≤ 1

2 (µ2 + ν2). But then:

1
2 (µ2 + ν2) > 1

2 (µ1 + ν1),

a contradiction. Thus, `∗ is not dominated by any such simple lottery over two
points and so OE(S,�) ∈WCO(S,�). This completes the proof.

We can use essentially the same argument to show that if preferences satisfy ordinal
risk neutrality instead of ordinal risk aversion then the OE solution satisfies full WPO.

Corollary 1. On ΣN , the OE solution satisfies WPO.

Proof/
Let (S,�) ∈ ΣN be given and `∗ = OE(S,�). As ΣN ⊂ ΣA, by Lemma 2

`∗ ∈ DCO(S,�) and supp(`∗) ⊂WPO(S,�). Moreover, following the proof of Lemma
2, the only case in which the OE solution is not WPO is when OE(S,�) = `∗ =
(1/2, 1/2;x, y) and there is a candidate lottery `′ = (µ, 1− µ;w, z) that could possibly
Pareto dominate `∗ where(i) w, z /∈ DPO(S,�) and (ii)x �1 w �1 z �1 y, with the
inverse for agent 2. As preferences satisfy FOSD, if `′ ∈ WPO(S,�) then neither w
nor z are Pareto dominated by any point in S. Moreover, if w or z is Pareto dominated
by lottery, `′′ = (φ, 1 − φ; a, b), since by hypothesis `′ Pareto dominates `∗, it follows
that `′′ Pareto dominates `∗. However from the proof of Lemma 2, it cannot be the
case that a �1 x,�1 y,�1 b. Thus on ΣN , if w, z /∈ DPO(S,�) then w and z must
be Pareto dominated by some lotteries over the Pareto Optimal points x and y. Then
using the argument in part 2 of the proof of Lemma 2, by the Archimedean Axiom we
may define the mixtures over x and y such that w and z are certainty equivalents of
these mixtures:

`w1 = (µ1, 1− µ2;x, y) ∼1 w

`z1 = (ν1, 1− ν1;x, y) ∼1 z

`w2 = (µ2, 1− µ2;x, y) ∼2 w

`z2 = (ν2, 1− ν2;x, y) ∼2 z.

Therefore we can adapt the argument of the proof in case 2 in Lemma 2, by
replacing weak preference with indifference, to establish that if w, z /∈ DPO(S,�),
then `′ cannot Pareto dominate `∗. Thus `∗ ∈WPO(S,�).
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Next we show that given ORA, the OE solution satisfies IRA.

Lemma 3. On ΣA, the OE solution satisfies IRA.

Proof/
This is immediate from the definition of OE. Let (S,�) ∈ ΣA be given then

OE(S,�) is either the middle ranked point of DPO(S,�), x if the cardinality of
DPO(S,�) is odd, or the lottery ( 1

2 ,
1
2 ;x, y) where x and y are the two middle ranked

points in DPO(S,�) when the cardinality of DPO(S,�) is even. Let (S′ �′) be such
that the hypothesis of IRA applies to the pair DPO(S,�), DPO(S′,�′). Then by
definition if the cardinality of DPO(S,�) is odd then x is the middle ranked point of
DPO(S′,�′) and so x = OE(S′,�′). The analogous argument holds is the cardinality
of DPO(S,�) is even. Thus OE(S,�) = OE(S′,�′).

Finally, we show the OE solution satisfies Symmetry.

Lemma 4. On ΣA, the OE solution satisfies SYM .

Proof/
Take any ordinally symmetric problem (S,�) ∈ ΣA with associated symmetric

permutation operator φ. We must show that OE(S,�) is a fixed point of φ.
1. Suppose that the cardinality of DPO(S,�) is odd. Then OE(S,�) = x is the

middle ranked point in the DPO set. Suppose that φ(x) = y 6= x. We first
show that if x is Pareto optimal then φ(x) must be Pareto optimal. Suppose not,
then there exists some lottery `, such that (without loss of generality) ` �1 y and
` �2 y. Then by the definition of symmetry for `′ = φ(`) it holds that `′ �2 x
and `′ �1 x. But this contradicts the hypothesis that x ∈WPO(S,�). Therefore,
y ∈ DPO(S,�).
Now define A = {z ∈ DPO(S,�) | z �1 x} and B = {z ∈ DPO(S,�) | z �2 y}
Suppose without loss of generality that x �1 y. Then as x, y ∈ DPO(S �), it
must be that y �2 x. Note that if z ∈ A, then by SYM, φ(z) �2 φ(x) = y. By the
argument above, φ(z) ∈ DPO(S,�). Therefore, z ∈ A if and only if φ(z) ∈ B. It
follows that |A| = |B |. Therefore, if x 6= y, then x could not be the middle ranked
point in the Pareto set, which contradicts the hypothesis that x = OE(S,�).

2. Suppose now that the cardinality of DPO(S,�) is even. Then OE(S,�) =
( 1

2 ,
1
2 ;x, y) suppose now that φ(x) = z 6= y, then we may replicate the previous

argument using x and z to obtain a similar contradiction.

Having shown that the OE solution satisfies our axioms, we need one additional
technical lemma to complete our characterizations.

Lemma 5. Let (S,�) ∈ Σ0. Define S′ = DPO(S �) and let �′ be the restriction of
� on S′, then WCO(S′,�′) = WPO(S′,�′) = WCO(S,�).

Proof/
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First, observe by definition that for all x ∈ S′, it must be that x ∈ WPO(S,�)
and since S′ ⊂ S, it also follows that x ∈WPO(S′ �′). Suppose that ` ∈ L(S′) Pareto
dominates some `′ ∈ L(S′). Then as the support of ` is Pareto optimal in L(S′), it
must be that ` credibly dominates `′ as well. Therefore, we have that WCO(S′,�′ ) ⊂
WPO(S′,�′). Also, since for all x ∈ S′, x ∈ WPO(S,�), if ` ∈ WPO(S′ �′)
then the support of ` is Pareto optimal and so WPO(S′,�′) ⊂ WCO(S′ �′). Thus,
WCO(S′,�′ ) = WPO(S′,�′).

We now prove that WPO(S′,�′) = WCO(S,�).

(i) Let ` ∈WPO(S′,�′). By definition:

(a) supp(`) ⊂WPO(S,�) and
(b) 6 ∃ `′ ∈ L(S′) such that `′ Pareto dominates `.

But then as S′ = S ∩WPO(S,�) ≡ DPO(S′,�′), there does not exist an `′′ ∈ L(S)
that credibly dominates `. Thus WPO(S′,�′) ⊂WCO(S,�).

(ii) Let ` ∈WCO(S,�). By the definition of WCO(S,�) we have that supp(`) ⊂
DPO(S,�) and so ` ∈ L(S′). We now consider two cases. First, suppose ` ∈
WPO(S,�). Then ` ∈ WPO(S′,�′), and as supp(`) ⊂ WPO(S′,�′), we conclude
that ` ∈ WCO(S′,�′). Second, suppose instead that ` 6∈ WPO(S,�). Then as
` ∈ WCO(S,�), it must be Pareto dominated by a lottery `′ with an element y in its
support that is Pareto dominated in L(S). But then y 6∈ S′, and thus `′ 6∈ L(S′). Thus,
` is not Pareto dominated in L(S′). We conclude that WCO(S,�) ⊂WPO(S′,�′).

Therefore: WCO(S′,�′) = WPO(S′,�′) = WCO(S,�).

With these preliminaries we now provide our characterization theorems. Theorem
2 applies to the domain of problems in which agents’ preferences satisfy ordinal risk
aversion. For this domain, symmetry, weak credible optimality and independence of
redundant alternatives characterize the ordinal egalitarian solution.

Theorem 2. A solution on ΣA satisfies SYM , WCO and IRA if and only if F = OE.

Proof/
By Lemmas 4, 2 and 3, the OE solution satisfies SYM,WCO and IRA.
To show the converse, consider any (S,�) ∈ ΣA, and let S′ ≡ DPO(S,�). Define

(S′,�′) where �′ is the restriction of � on S′. By construction, if x ∈ S′, then x is
Pareto optimal with respect to �. By Lemma 5, WCO(S′,�′) = WCO(S,�).

Let φ be a mapping defined on S′ as follows:

φ(x) = y s.t. RANK1(x, S′) = RANK2(y, S′).

Note that φ is a symmetric permutation operator on S′.
Now construct a new bargaining problem with preferences defined as follows (S′′,�′′ )

where S′ = S′′ and �′′ is induced from the lower contour sets defined by:
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LCSi(x) ≡ co({` 6�′i x} ∪ φ({φ(`) 6�′j φ(x)})).

where co denotes the convex hull. By taking the convex hull of the “not better than
sets”, the preferred sets to any nondegenerate allocation are weakly contracted for both
agents.

By construction if ` �′′i x then both ` �′′i x and φ(`) �′′j φ(x), and since by
definition φ is one to one, φ(φ(`)) = ` and so we have that φ(`) �′′j φ(x). Thus
(S′′,�′′) is a symmetric problem with respect to φ. [The proof that (S′′,�′′) is in the
domain ΣA is available on request.]

We next prove that if a solution F satisfies SYM and WCO, then F (S′′,�′′) =
OE(S′′,�′′).

1. Consider the case in which the OE solution is a degenerate lottery, that
is OE(S,�) = x. Observe that in this case, by construction, we also have that
OE(S′′,�′′ ) = x.

Now consider the problem (S′′,�′′′). By construction, DPO(S′′,�′′) = DPO(S,� ) =
S′′. Thus, since x is the OE solution of S′′ it is by definition the “middle point” of S′′.
It follows that x is a fixed point of the symmetry mapping φ on S′′. Since by Lemma 2,
the OE solution satisfies WCO we also have that x ∈WCO(S′,�′). If x is the unique
WCO fixed point, then by SYM and WCO the x = F (S′′,�′′).

Suppose instead that x is not the unique WCO fixed point in S′′ under φ. In the
following we demonstrate that by perturbing preferences and applying the IRA axiom
such lotteries cannot be the solution. Since x is the unique fixed point in S′′ (that
is, degenerate lottery which is a fixed point), any other symmetric point must be a
nondegenerate lottery `′. By the construction of the symmetry mapping φ, the support
of such of a lottery, supp(`′) must contain points c, d such that c �1 x �1 d. Suppose
it happens that `′ = ( 1

2 ,
1
2 ; c, d) and without loss of generality `′ �1 x. But then by the

Archimedean axiom x is the certainty equivalent of some lottery `1 = (µ, 1 − µ; c, d)
(with µ ≤ 1

2 ), and so `′ = ( 1
2 ,

1
2 ; c, d) can be written as a compound lottery over c and

`1. Thus, by the ORA axiom, using the construction used in the proof of Lemma 2, as
c and d are Pareto optimal, there must exist another lottery `∗ = (λ, 1 − λ; c, x) that
Pareto dominates or is Pareto equivalent to (1

2 ,
1
2 ; c, d). Now define the problem (S̃, �̃)

where S′′ = S̃ and �̃ has the same ordinal structure as �′′ but is such that `∗ strictly
Pareto dominates ( 1

2 ,
1
2 ; c, d). That is we have made certain lotteries “redundant” in the

sense of IRA axiom. Then, by WCO, as ` is dominated by a Pareto optimal degenerate
allocation, ` 6= F (S′′,�′′).

The same argument holds regardless of how many points are in the candidate
symmetric, WCO lottery (`′ in the paragraph above) and so we can conclude that no
alternative symmetric lottery could be the solution to (S ,� ) Thus, for the problem
(S ,� ) the point x is the unique fixed point that is also in WCO(S ,� ), and thus x =
F (S ,� ). Now, since the hypothesis of IRA applies to the pairs (S′′,�′′), and (S ,� )
we have that x = F (S′′,�′′). However, by the construction of (S′,�′) as the hypothesis
of IRA also applies to the pairs (S,�), (S′,�′) it follows that by repeated application
of IRA that F (S,�) = F (S′ �′) = F (S′′,�′′) = x = OE(S,�).
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2. Now consider the case in which the OE solution is a non-degenerate lottery,
that is OE(S,�) = `. Essentially, the same argument given above holds:

Let (a, b) be the support of the points in lottery ` = OE(S′,�′). Let (c,d) be two
points in the support of an alternative symmetric, WCO lottery, `′, where without loss
of generality c �1 a �1 b �1 d.

Let `a be the lottery over (c, d) that is exactly as good as point a to agent 1.
Let `b be the lottery over (c, d) that is exactly as good as point b to agent 1.
We then apply ORA to the 50/50 lottery over `a and `b in the same way we do

above, and the argument proceeds as before.
We conclude that a solution on ΣA satisfies SYM , WCO and IRA if and only if

F = OE.

Finally, if we are willing to further restrict the domain of preferences to those sat-
isfying ordinal risk neutrality, we can use Corollary 1 to show that the characterization
can be strengthened to include full WPO instead of WCO.

Theorem 3. A solution on ΣN satisfies SYM , WPO and IRA if and if F = OE.

Proof/
The proof is almost identical to that for Theorem 2. To begin, by Lemmas 4, and

3, the OE solution satisfies SYM, and IRA. Also, on ΣN , by Corollary 1 the OE
solution satisfies WPO.

To show the converse, note that any solution that satisfies WCO also satisfies
WPO. Thus we can apply the previous theorem directly.

References

Anbarci, N. (1993): “Noncooperative Foundations of the Area Monotonic Solutions,”
The Quarterly Journal of Economics, 108 245-58.

Anbarci, N. and J. Bigelow (1994): “The area monotonic solution to the cooperative
bargaining problem,” Mathematical Social Sciences, 28 133-142.

Brams, S and D. Kilgour (2001): “Fallback Bargaining,” Group Decision and Ne-
gotiation, 10, 287-316..

Camerer, C (1989): “An Experimental test of Several Generalized Utility Theories,”
Journal of Risk and Uncertainty, 2, 61-104.

Chew, S. H. (1989): “Axiomatic Utility Theories with the Betweenness Property,”
Annals of Operations Research, 19. 273-298.

24



Conley, J. P., and S. Wilkie (1996): “An Extension of the Nash Bargaining Solution
to Nonconvex Problems,” Games and Economic Behavior, 13, 26-38.

Dekel, E. (1986): “An Axiomatic Characterization of Preferences Under Uncertainty:
Weakening the Independence Axiom,” Journal of Economic Theory, 40, 304-318.

Dhillon, A, and J.F. Mertens (1999): “Relative Utilitarianism,” Econometrica, 68,
417-498.

Fishburn, P. (1983): “Transitive Measurable Utility,” Journal of Economic Theory,
31 , 293-317 .

Grant, S and A. Kajii (1995): “A Cardinal Characterization of the Rubinstein-
Safra-Thomson Axiomatic Bargaining Theory,” Econometrica, 63, 1241-1249.

Harless, D. and C. Camerer (1994): “The Predicted Utility of Generalized Utility
Theories,” Econometrica, 62 1251-1289.

Hanany E. and Z. Safra (2000): “The Existence and Uniqueness of the Ordinal
Nash Outcomes,” Journal of Economic Theory, 90, 254-276.

Karni, E. and D. Schmeidler (1991): “Utility Theory with Uncertainty,” Handbook
of Mathematical Economics Volume IV, Elsevier.

Kibris, O. (2004): “Egalitarianism in Ordinal Bargaining: the Shapley-Shubik rule,”
Games and Economic Behavior, 49, 157-170.

Kibris, O. and M. Sertel (2007): “Bargaining over a Finite Set of Alternatives,”
Social Choice and Welfare, 28 421-437.

Machina, M. (1984): “Temporal Risk and the Nature of Induced Preferences,” Jour-
nal of Economic Theory, 33 199-231.

Machina, M. (1987): “Choice Under Uncertainty: Problems Solved and Unsolved,”
Journal of Economic Perspectives, 1, 121-154.

Mariotti, M. (1998): “Nash bargaining theory when the number of alternatives can
be finite,” Social Choice and Welfare, 15. 413-421.

Nash, J. (1950): “The Bargaining Problem,” Econometrica, 18, 155-62.

Neilsen, W.S. (1992): “A Mixed Fan Hypothesis and its Implications for Behavior
Towards Risk,” Journal of Economic Behavior and Organization, 19, 197-212.

Roemer, J. (1986): “The Mismarriage of Bargaining Theory and Distributive Jus-
tice,” Ethics, 96, 88-110.

Rothchild, M. and J. Stiglitz (1970): “Increasing Risk I: A definition,” Journal of
Economic Theory, 2, 225-243.

Rubinstein, A., Z. Safra, and W. Thomson (1992): “On the Interpretation of the
Nash Bargaining Solution and Its Extension to Non-Expected Utility Preferences,”
Econometrica, 60, 1171-1186.

Safra, Z. and D. Samet (2004): “An Ordinal Solution to the Bargaining Problem
With Many Players ,” Games and Economic Behavior, 46, 129-142.

Sakovics, J. (2004): “A Meaningful Two-person Bargaining Solution Based on Ordinal
Preferences,” Economics Bulletin, 3 No.26, pages 1-6.

25



Samet, D. and Z. Safra (2005): “A Family of Ordinal Solutions to Bargaining
Problems With Many Players,” Games and Economic Behavior, 50, 89-106.

Segal, U. (1990): “Two Stage Lotteries without the Reduction Axiom,” Econometrica,
58, 349-377.

Shapley, L. (1969): “Utility Comparison and the Theory of Games,” in La Decision:
Aggregation et Dynamique des Ordres de Preference, by 251-263, CNRS, Paris.

Shubik, M. (1982): Game Theory in the Social Sciences. MIT Press, Cambridge,
MA.

Starmer, C. (1992): “Testing New Theories of Choice Under Uncertainty Using The
Common Consequence Effect,” Review of Economic Studies, 59, 813-830.

Thomson, W. (1996): Bargaining Theory: The Axiomatic Approach. Academic
Press, forthcoming.

26


