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Abstract

We give intuitive Samuelson conditions for a very general class of economies.
Smoothness and monotonicity are not required. We provide necessary and
sufficient conditions for all Pareto efficient allocations, including those on the
boundary. We prove that if all agents have a cheaper point, the supporting
prices fully decentralize the allocation. We also show first and second welfare
theorems as corollaries to the characterization of efficient allocations.



1. Introduction

Samuelson (1954, 1955) gave the first modern study of economies with public

goods. One of his main results was to provide a set of calculus-based conditions for

Pareto efficiency. These “Samuelson conditions” have since become one of the funda-

mental tools for understanding public goods economies. However, his work has several

important limitations. In particular, he did not deal with the issue of corner allocations,

in which at least one good is not consumed at all by at least one agent. Given that

this is probably the typical rather than the exceptional case in real life, his omission is

not trivial. Unless we can characterize corner allocations as well, we must doubt the

practical relevance of the studies based on Samuelson conditions.

Later, economists assumed that the most obvious modification of Samuelson’s

efficiency conditions would be sufficient to deal with the problem of corner solutions.

This modification involves setting the sum of the marginal rates of substitution of the

consumers equal to the marginal rate of transformation in production for each public

good (relative to the same private good), unless the amount of a public good is zero, in

which case the sum of the marginal rates of substitution may be less than the marginal

rate of transformation. However, as Campbell and Truchon (1988) point out in an

important paper, there are cases where some efficient allocations violate the Samuelson

conditions, even as modified. Campbell and Truchon conclude that the Samuelson

conditions miss some efficient allocations, and they provide a different specification of

the Samuelson conditions which they show to be necessary and sufficient for efficiency

in economies with one private good and a finite number of public goods. They assume

differentiability of the utility and cost functions, convexity of preferences and cost, and

monotonicity of preferences.

Unfortunately, the analysis of Campbell and Truchon is limited by their assump-

tion that there is only one private good, and their need for differentiability. The first

assumption restricts the application of their contribution to an essentially partial equi-

librium domain. Requiring differentiability also reduces the class of economies to which

their analysis may be applied. These observations motivate an approach to the prob-
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lem using convex analysis, in the standard fashion established by Arrow (1951) for

economies with private goods only.

Such an analysis was offered by Foley (1970) in the course of formalizing the general

notion of Lindahl equilibrium. However, he requires in his definition that allocations

be in the relative interior of the private goods subspace of the consumption set of each

agent. Thus, Foley does not deal with corner allocations either. Khan and Vohra (1987)

generalize Foley (1970) to allow general preferences and nonconvexities, but they focus

on the second welfare theorem and do not elaborate on how to deal with boundary

allocations.

In this paper we provide efficiency conditions for economies with a finite number

of private and public commodities, without assuming differentiability. We do not re-

quire that commodities be goods. This allows us to consider the important real world

situation in which a public project (a garbage incinerator, for example) benefits some

agents while imposing costs on others. We require only that agents have locally nonsa-

tiated preferences. Our analysis deals with corner and interior allocations in a unified

way. Unlike Campbell and Truchon (1988), we do not need to appeal to the Karush-

Kuhn-Tucker theorem, and our proofs are simple and geometric in nature. We develop

the most general form of the Samuelson conditions in a simple and operational form,

and we further show the existence of fully (Lindahl) supporting prices at any Pareto

efficient allocation, for all agents who are allowed a cheaper point by the Samuelson

prices corresponding to the allocation. As corollaries to these efficiency conditions we

show first and second welfare theorems.
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2. The Model

We consider an economy with L private commodities and M public commodities, I

individual consumers, and F firms. We use the convention I ≡ {1, . . . , I}, and similarly

for L,M and F . Superscripts are used to represent firms and consumers and subscripts

to represent commodities.

Each agent i ∈ I is characterized by an endowment ωi ∈ <L
+, and a preference

relation �i over the consumption set Ci ≡ <L+M
+ . A typical consumption bundle will

be written (x, y) where x is a bundle of private commodities, and y is a bundle of public

commodities. We remark that assuming the consumption set to be the nonnegative

orthant is not less general than Campbell and Truchon’s introduction of a nonnegative

lower bound for the consumption of the private good by each agent, since we can always

translate the preferences in order to make this lower bound zero. It is also possible to

generalize the results in this paper to bounded below, convex consumption sets which

may differ across the agents at the cost of complicating the proofs.1

We make the following assumptions on �i for all i ∈ I.

A1) �i is complete and transitive.

A2) �i is continuous (the upper and lower contour sets are closed relative to Ci).

A3) If (x, y) �i (x̃, ỹ), then for all λ ∈ [0, 1], λ(x, y) + (1− λ)(x̃, ỹ) �i (x̃, ỹ).

(Weak convexity)

A4) For all (x, y) ∈ Ci and all ε > 0 there exists (x̃, ỹ) ∈ Ci such that ‖ (x, y)−(x̃, ỹ) ‖ <

ε and (x̃, ỹ) �i (x, y). (Local nonsatiation)2

The price space is denoted by

Π ≡ {(p, q) ∈ <L+IM | (p, q) 6= 0}.

Through this paper we will use the convention that omitted superscripts indicate that

the entire vector is being referred to. Thus, q = (q1, . . . , qI) where qi ∈ <M is inter-

1 We thank Tomoichi Shinotsuka for this observation.

2 As usual, (x, y) �i (x̃, ỹ) if (x, y) �i (x̃, ỹ) and (x̃, ỹ) 6�i (x, y).
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preted as the personalized price vector for the public goods for agent i. In many places

we will be interested in the summation of a prices or quantity vector over agents. In

order to save space, we will indicate this with bold face type. Thus,

q ≡
∑
i

qi.

Note that we do not assume that prices are positive, but we exclude the zero vector from

the price space. Define the marginal rate of substitution correspondence for consumer

i, MRSi : Ci →→ Π, by:3

MRSi(xi, yi) ≡{
(p, q) ∈ Π | (p, qi) · (xi, yi) < (p, qi) · (x̃i, ỹi) ∀ (x̃i, ỹi) ∈ Ci s.t. (x̃i, ỹi) �i (xi, yi)

}
.

Define also the weak marginal rate of substitution correspondence for consumer i,

WMRSi : Ci →→ Π, by:

WMRSi(xi, yi) ≡{
(p, q) ∈ Π | (p, qi) · (xi, yi) ≤ (p, qi) · (x̃i, ỹi) ∀ (x̃i, ỹi) ∈ Ci s.t. (x̃i, ỹi) �i (xi, yi)

}
.

The MRS correspondence is simply the set of hyperplanes supporting, but not intersect-

ing, the strictly preferred set. This means that all consumption bundles on a supporting

hyperplane in MRSi(xi, yi) are not strongly preferred to (xi, yi) and all bundles below

the hyperplane are inferior. The WMRS correspondence, on the other hand, is the

set of hyperplanes supporting the weakly preferred set but possibly intersecting the

strictly preferred set. (If it were not for the restriction on the price space, the WMRS

would equal minus the normal cone to the weakly preferred set; see Rockafellar 1970.)

This means that all consumption bundles below the hyperplane are inferior, but bun-

dles on the hyperplane may be strongly preferred to (xi, yi). Obviously, the marginal

3 It may seem odd at first that we define the supporting prices for an agent to elements of Π, which
has dimension L + IM . We do this mainly to simplify notation, but it is easy to give an economic
interpretation. Following Foley, we can think of public goods as jointly produced private goods. In this
case, agents maximize their preferences over the entire L+ IM dimensional joint commodity space and
therefore require this many prices to define their budget constraint. Of course, agents are satiated in all
but L + M of the commodities and so do not care about the other (I − 1)M . Thus, their optimization
is equivalent to optimization in the L + M subspace given in the definition of MRS.
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rate of substitution set MRSi(xi, yi) is always a subset of the weak marginal rate of

substitution set WMRSi(xi, yi). The reason we need the WMRS correspondence is

that the weakly preferred set may not be closed at the boundary, and so the MRS

correspondence may be empty. The WMRS correspondence is never empty-valued,

since it is the supporting hyperplane set at a boundary point of a closed, convex set.

Also note that if (p, q) ∈ MRSi(xi, yi) and the agent has income (p, qi) · (xi, yi), then

(xi, yi) is a preference maximizing choice over the budget set. On the other hand if

(p, q) ∈WMRSi(xi, yi) then we are only guaranteed that (x, y) minimizes expenditure

over the set of consumption bundles which are not inferior to (x, y). If the consumption

bundle is interior, and the utility function differentiable, then these correspondences

are nonempty, single valued, and of course, identical.

[Figure 1 here]

In the example depicted in Figure 1, the agent’s indifference curves intersect the

public commodity axis with a vertical slope, and terminate at their intersection with

this axis. Otherwise, the preferences are standard, satisfying all of the assumptions A,

as well as most other assumptions commonly made on preferences. At every point on

the public commodity axis, the weak marginal rate of substitution correspondence has

a singleton value of (1, 0).4 In other words, the vertical axis supports the preferred set.

Since the WMRS correspondence contains the MRS correspondence, and the unique line

of support intersects the preferred set, the marginal rate of substitution correspondence

is empty-valued.

We represent each firm f ∈ F by a production set P f ⊂ <L × <M
+ . A typical

production plan will be written (zf , gf ), where z is a net output vector of private

commodities and gf is the output vector of public commodities.

Define the marginal rate of transformation correspondence for P f , MRTf : P f →→

4 Properly speaking, we should have indicated all the elements of the supporting vector here, in accor-
dance with the definition of MRS and WMRS. However, in all discussions of examples we only indicate
the components relating to the commodities consumed by the agent in question, to enhance clarity.

5



Π, as follows:

MRTf (zf , gf ) ≡{
(p, q) ∈ Π | (p,q) · (zf , gf ) ≥ (p,q) · (z̃f , g̃f ) ∀ (z̃f , g̃f ) ∈ P f

}
.

If not for the restriction on the price space, MRT would be the normal cone to the

production set (Rockafellar 1970, page 15).

The comprehensive hull of a set in <L ×<M
+ is defined as follows:

comp(Z) ≡
{

(z, g) ∈ <L ×<M
+ | ∃(z̃, g̃) ∈ Z s.t. (z, y) ≤ (z̃, g̃)

}
.

For all f ∈ F we assume:

B1) P f is a nonempty, closed set.

B2) P f is a convex set.

B3) P f = comp(P f ) (Free disposal).

We define the global production set in the usual way:

P ≡

(z,g) ∈ <L ×<M
+

∣∣∣∣∣∣(z,g) ≡
∑
f

(zf , gf ) and (zf , gf ) ∈ P f ∀ f ∈ F

 .

Note that we follow the convention established for summations over agents and so

z ≡
∑
f

zf g ≡
∑
f

gf and P ≡
∑
f

P f .

Now define the aggregate marginal rate of transformation correspondence MRT : P→→

Π by

MRT(z,g) ≡ {(p, q) ∈ Π | (p,q) · (z,g) ≥ (p,q) · (z̃, g̃) ∀ (z̃, g̃) ∈ P} .

We make the additional assumption:

B4) P is closed.

Notice that P inherits convexity and comprehensiveness from the individual P f sets.

An allocation is a list a = ((x1, y1), . . . , (xI , yI), (z1, g1) . . . (zF , gF )) ∈ C1 × · · · ×

CI × P 1 × · · · × PF . Let A denote the set of feasible allocations:

A ≡

{
a ∈ C1 × · · · × CI × P 1 × · · · × PF

∣∣∣∣∣
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∑
f

zf =
∑
i

(xi − ωi) and
∑
f

gf ≡ g = yi ∀ i ∈ I

 .

Although we retain the superscript i for the consumption of public commodities

by agent i, the definition of a feasible allocation requires that all agents consume

exactly the same vector of public commodities. Thus, agents cannot freely dispose

of an undesirable public good, for example.

The set of Pareto efficient allocations is defined as

PE ≡

{
a ∈ A |/∃ â ∈ A s.t. ∀i ∈ I, (x̂i, ŷi) �i (xi, yi) and ∃ j ∈ I s.t. (x̂j , ŷj) �j (xj , yj)

}
.

Let ∆I−1 denote the I − 1 dimensional simplex:

∆I−1 ≡

{
θ ∈ <I |

∑
i

θi = 1, and θi ≥ 0 ∀ i ∈ I

}
.

We denote a profit share system for a private ownership economy by θ = (θ1, . . . θf , . . . θF ) ∈

∆I−1× . . .×∆I−1 ≡ Θ where θi,f is interpreted as consumer i’s share of the profits of

firm f .

An allocation and price vector (a, p, q) ∈ A×Π is said to be a Lindahl equilibrium

relative to the endowment ω ∈ <I×L and profit shares θ ∈ Θ if and only if:

a. for all f ∈ F , (p, q) ∈ MRTf (zf , gf ).

b. for all i ∈ I, (p, q) ∈ MRSi(xi, yi) and (p, qi)·(xi, yi) = p·ωi+
∑

f θ
i,f (p,q)·(zf , gf ).

Note that given the definitions of MRSi and MRTf , and the fact that local non-

satiation implies that each agent will exhaust his income, these are equivalent to profit

and preference maximization, respectively. Feasibility is already required by the def-

inition of an allocation. Define the Lindahl equilibrium allocation correspondence

LE : <I×L ×Θ→→ A as follows:

LE(ω, θ) ≡

{a ∈ A | for some (p, q) ∈ Π, (a, p, q) is a Lindahl equilibrium for ω and θ}.
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3. Results

In this section, we give a formal presentation of our results. A verbal summary

our main point (the generalized Samuelson conditions) can be found in the concluding

section. We begin by showing that the private commodity prices must be nonnegative.

Lemma 1. For all (z,g) ∈ P and all p such that there exists q with (p, q) ∈ MRT(z,g),

it is the case that p ≥ 0.

Proof/

Suppose not; then for some (z,g) ∈ P and (p, q) ∈ Π such that (p, q) ∈ MRT(z,g),

there is a private commodity ` ∈ L such that p` < 0. By free disposal, for all δ > 0

(z1, . . . , z` − δ, . . . , zL,g) ∈ P. But (p,q) · (z1, . . . , z` − δ, . . . , zL,g) > (p,q) · (z,g),

contradicting the definition of MRT(z,g).

The following standard lemma states that, given an allocation a ∈ A and prices

(p, q) ∈ Π, (z,g) maximizes profits over the global production set P at prices (p,q)

if and only if (zf , gf ) maximizes the profits of each firm f ∈ F at these prices. This

allows us to state the subsequent theorems in terms of maximizing profits over the

global production set instead of going to the extra step of considering each firm. Since

this lemma is standard, we omit the proof to save space.

Lemma 2. Given (z,g) ∈ P and (p, q) ∈ Π, (p,q) · (z,g) ≥ (p,q) · (z̄, ḡ) for all

(z̄, ḡ) ∈ P if and only if for all f ∈ F there exists (zf , gf ) such that (p,q) · (zf , gf ) ≥

(p,q) · (z̄f , ḡf ) for all (z̄f , ḡf ) ∈ P f and
∑

f (zf , gf ) = (z,g).

We now give the first necessity theorem.

Theorem 1. For all a ∈ PE, there exists a price vector (p, q) ∈ Π such that (a)

(p, q) ∈ MRT(z,g) and, (b) for all i ∈ I, (p, q) ∈WMRSi(xi, yi).

Proof/
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Following Foley, we define an artificial production set in which public commodities

are treated as strictly jointly produced private commodities:

AP ≡
{

(z̃, g̃1, . . . , g̃I) ∈ <L ×<IM | g̃1 = · · · = g̃I = g̃ and (z̃, g̃) ∈ P
}
.

AP is closed, convex, and nonempty as a consequence of P possessing these prop-

erties. Next we define the socially preferred set of the allocation a:

SP (a) ≡

{
(z̃, ỹ1, . . . , ỹI) ∈ <L ×<IM

∣∣∣∣∣ ∀ i ∈ I, ∃ x̃i with (x̃i, ỹi) ∈ Ci s.t.

z̃ =
I∑

i=1

(x̃i − ωi), ∀ i ∈ I,
(
x̃i, ỹi

)
�i (xi, yi) and ∃ j ∈ I s.t.

(
x̃j , ỹj

)
�j (xj , yj)

}
.

The socially preferred set inherits convexity, and by continuity and nonsatiation it has

a nonempty interior.

a. Since a = ((x1, y1), . . . , (xI , yI), (z1, g1) . . . (zF , gF )) ∈ PE by assumption, SP (a)∩

AP = ∅. Then by the Minkowski Separation Theorem (Takayama 1985, p. 44),

there exists a price vector (p, q1, . . . , qI) 6= 0 with ‖ p ‖ < ∞, and a scalar r, such

that:

(i) For all (z̃, g̃1, . . . , g̃I) ∈ AP , p · z̃ +
∑

i q
i · g̃i ≤ r.

(ii) For all (z̃, ỹ1, . . . , ỹI) ∈ closure(SP (a)), p · z̃ +
∑

i q
i · ỹi ≥ r.

By continuity and nonsatiation, (z, y1, . . . , yI) ∈ closure(SP (a)). By hypothesis,

(z, y1, . . . , yI) ∈ AP . It follows from (i) and (ii) that p · z +
∑

i q
i · yi = r. Therefore,

for all (z̃, g̃1, . . . , g̃I) ∈ AP :

p · z +
∑
i

qi · gi = r ≥ p · z̃ +
∑
i

qi · g̃i.

Since (p, q) 6= 0, this establishes part (a) of the theorem.

b. Now suppose that part (b) is false. Then there exists j ∈ I such that for some

(x̄j , ȳj) ∈ Cj it is the case that (x̄j , ȳj) �j (xj , yj) and (p, qj) · (x̄j , ȳj) < (p, qj) ·

(xj , yj). Hence,∑
i 6=j

(xi − ωi) + (x̄j − ωj), y1, . . . , ȳj , . . . , yI

 ∈ SP (a)
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and

p ·
∑
i 6=j

(xi − ωi) + p · (x̄j − ωj) +
∑
i 6=j

qi · yi + qj · ȳj

<
(
p, q1, . . . , qI

)
·

(∑
i

(xi − ωi), y1, . . . , yI

)
a contradiction to (ii) above.

We note that, as in Milleron (1972, page 431), we do not actually need the closed-

ness of the production set, but without it Lindahl equilibria may fail to exist, in which

case the whole line of inquiry along second welfare theorem lines rests on a shaky foun-

dation. Optimality conditions very similar to this were used in Conley (1994) for a one

private, M public good economy. No proof of their validity was offered, however.

As a corollary to this theorem we state a version of the second welfare theorem.

In particular, we show that we can decentralize any Pareto efficient allocation through

prices for some set of endowments and profit shares such that the production of each

firm is profit maximizing under the prices, and each agent’s consumption bundle min-

imizes expenditure over the weakly preferred set. This is not quite the same thing as

decentralizing the allocation as a Lindahl equilibrium since agents are not necessar-

ily maximizing preferences over the budget set. To get this stronger result, slightly

stronger conditions are needed. We show this below. See Debreu (1959) for details.

Corollary 1.1 (weak second welfare theorem) For all a ∈ PE, there exists a price

vector (p, q) ∈ Π an endowment vector ω̂ such that
∑

i ω
i =

∑
i ω̂

i, and a profit share

system θ̂ ∈ Θ such that (a) (p, q) ∈ MRT(z,g), (b) for all i ∈ I, (p, q) ∈WMRSi(xi, yi),

and (c) (p, qi) · (xi, yi) = p · ω̂i +
∑

f θ̂
i,f (p,q) · (zf , gf ).

Proof/

We know by Theorem 1, there exist prices (p, q) ∈ Π such that (a)(p, q) ∈ MRT(z,g)

and (b) for all i ∈ I, (p, q) ∈WMRSi(xi, yi). For all i ∈ I, let

ω̂i ≡ (p, qi) · (xi, yi)∑
j(p, q

j) · (xj , yj)
∑
j

ωj ,
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and for all i ∈ I, and all f ∈ F , let

θ̂i,f ≡ (p, qi) · (xi, yi)∑
j(p, q

j) · (xj , yj)
.

Note that by construction for all f ∈ F ,
∑

i θ
i,f = 1, and

∑
i ω

i =
∑

i ω̂
i. It only

remains to show that (p, qi) · (xi, yi) = p · ω̂i +
∑

f θ̂
i,f (p,q) · (zf , gf ). But

p · ω̂i +
∑
f

θ̂i,f (p,q) · (zf , gf ) =

p · (p, qi) · (xi, yi)∑
j(p, q

j) · (xj , yj)
∑
j

ωj +
∑
f

(p, qi) · (xi, yi)∑
j(p, q

j) · (xj , yj)
(p,q) · (zf , gf ) =

(p, qi) · (xi, yi)
p ·
∑

j ω
j +

∑
f (p,q) · (zf , gf )∑

j(p, q
j) · (xj , yj)

=

(p, qi) · (xi, yi)
p ·
∑

j ω
j +

∑
f (p,q) · (zf , gf )

p · (
∑

j ω
j +

∑
f z

f ) + q · g
= (p, qi) · (xi, yi)

Khan and Vohra (1987) consider a similar model of a public goods economy. They

do not assume convexity in preferences and production, and so are more general in

this respect. On the other hand, they assume monotonicity of preferences in public

commodities instead of nonsatiation. This excludes the examples like the garbage

incinerator mentioned in the introduction from the domain of problems they are able

to treat. They prove a version of the second welfare theorem employing a notion of

supporting vector set equivalent, under convexity, to our WMRS(xi, y) (Khan and

Vohra 1987, page 236).

Next, we give a second necessity theorem. We strengthen the hypothesis to require

that all agents have a cheaper point in the consumption set. This allows us to conclude

that there will exist supporting prices in the MRS correspondence of each agent, instead

of just the WMRS. This means that the prices are fully decentralizing.
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Theorem 2. If a ∈ A is a Pareto efficient allocation, then for every i ∈ I such that

(a) p · xi > 0, or (b) there exists m such that qim < 0, or (c) there exists m such that

qim > 0 and ym > 0, where (p, qi) are the prices established by Theorem 1, we have

that (p, q) ∈ MRSi(xi, yi).

Proof/

(a) Suppose that for some i ∈ I, p · xi > 0 and (p, q) /∈ MRSi(xi, yi). The latter

implies that there exists (x̄i, ȳi) ∈ Ci such that (x̄i, ȳi) �i (xi, yi) and (p, qi) · (xi, yi) ≥

(p, qi) · (x̄i, ȳi). Since p ≥ 0 by Lemma 1, and xi ≥ 0 because (xi, y) ∈ Ci, p · xi > 0

implies that there exists ` ∈ L such that p` > 0 and xi` > 0.

Denote the open line segment between two points by L((xi, yi), (x̄i, ȳi)). By the

convexity of preferences and the linearity of the budget constraint, for all (x̃i, ỹi) ∈

L((xi, yi), (x̄i, ȳi)), we have (x̃i, ỹi) �i (xi, yi) and (p, qi) · (xi, yi) ≥ (p, qi) · (x̃i, ỹi).

For (x̃i, ỹi) close enough to (xi, yi), x̃i` > 0. By the continuity of preferences, there

exists ε > 0 such that (x̃i1, . . . , x̃
i
`− ε, . . . , x̃iL, ỹi) �i (xi, yi). Since p` > 0, there follows

(p, qi) · (x̃i1, . . . , x̃i` − ε, . . . , x̃iL, ỹ
i) < (p, qi) · (x̃i, ỹi) ≤ (p, qi) · (xi, yi), leading to a

contradiction to (ii) in Theorem 1 (b).

(b) Suppose now that for some i ∈ I, ∃m s.t. qim < 0 and (p, q) /∈ MRSi(xi, yi).

The latter implies that there exists (x̄i, ȳi) ∈ Ci such that (x̄i, ȳi) �i (xi, yi) and

(p, qi) · (xi, yi) ≥ (p, qi) · (x̄i, ȳi). By the continuity of preferences, there exists ε > 0

such that (x̄i, ȳi1, . . . , ȳ
i
m + ε, . . . , ȳiM ) �i (xi, yi). Since qim < 0, this leads to the same

contradiction as in part (a).

(c) Finally, suppose that for some i ∈ I, ∃m s.t. qim > 0 and ym > 0 and

(p, q) /∈ MRSi(xi, yi). The latter implies that there exists (x̄i, ȳi) ∈ Ci such that

(x̄i, ȳi) �i (xi, yi) and (p, qi) · (xi, yi) ≥ (p, qi) · (x̄i, ȳi). We can now mimic the proof

of (a) above, with yim in the place of xi` and qim in the place of p`.

The reason that an extra assumption is required to obtain the full support is

illustrated in the following example. Consider an economy with two agents, one private
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and one public commodity, one firm with one-to-one linear technology, and endowment

of one unit of the private commodity for each agent. Agent 1 has preferences exactly

as in Figure 1, and agent 2 has translated Cobb-Douglas preferences such that the

slope of agent 2’s indifference curve at (x2, y2) = (3/2, 1/2) is −1. Then the allocation

(x1, y1, x2, y2, z1, g1) = (0, 1
2 ,

3
2 ,

1
2 ,−

1
2 ,

1
2 ) is Pareto efficient, but WMRS1(0, 1

2 ) contains

only the vector (1, 0), which intersects the strictly preferred set of agent 1.5 Therefore,

the Samuelson prices arising from Theorem 1 are not separating prices, and this failure

occurs for agent 1 who violates all three of the conditions of Theorem 2. This allows

us to state a stronger second welfare theorem.

Corollary 2.1 (strong second welfare theorem) If a ∈ A is a Pareto efficient allocation

such that for all agents i ∈ I, (xi, yi) is in the interior of Ci, then there exists a

price vector (p, q) ∈ Π an endowment vector ω̂, and a profit share system θ such that

a ∈ LE(ω̂, θ) and
∑

i ω
i =

∑
i ω̂

i.

Proof/

Since for all agents i ∈ I, (xi, yi) is in the interior of Ci, the hypothesis of The-

orem 2 is satisfied. Therefore, there exist prices (p, q) ∈ Π such that (a)(p, q) ∈

MRT(
∑I

i=1(xi − ωi),g) and (b) for all i ∈ I, (p, q) ∈ MRSi(xi, yi). But (a) means

all firms maximize profits under the prices, and (b) means each consumer i chooses

(xi, yi) when he maximizes his preferences while having income (p, qi) · (xi, yi). But

we know from the argument given in the proof of Corollary 1.1 that it is possible to

divide endowments and profits so that each agent has exactly this income, and the

social endowment is exactly exhausted.

We now give our sufficiency theorem.

Theorem 3. If a ∈ A is a feasible allocation and there exists a price vector (p, q) such

that (a) (p, q) ∈ MRT(
∑I

i=1(xi − ωi),g) and (b) for all i ∈ I, (p, q) ∈ MRSi(xi, yi),

5 This implies that MRS1(0, 1
2 ) = ∅.
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then a is Pareto efficient.

Proof/

Suppose that the hypotheses of the Theorem are met but a is not Pareto efficient.

Then there exists a feasible allocation ã ∈ A such that for all i ∈ I (x̃i, ỹi) �i (xi, yi),

and for some j ∈ I, we have (x̃j , ỹj) �j (xj , yj).

First observe that if (p, q) ∈ MRSi(xi, yi), and (x̃i, ỹi) �i (xi, yi), it is the case

that (p, qi) · (x̃i, ỹi) ≥ (p, qi) · (xi, yi). Suppose not, then by local nonsatiation, for all

ε > 0 there exists (x̂, ŷ) ∈ Ci such that ‖ (xi, yi) − (x̂, ŷ) ‖ < ε and (x̂, ŷ) �i (xi, yi).

But for small enough ε, (p, qi) · (x̂i, ŷi) < (p, qi) · (xi, yi), contradicting the definition of

MRS. Also, by definition of MRS, since (x̃j , ỹj) �j (xj , yj), we have (p, qi) · (x̃i, ỹi) >

(p, qi) · (xi, yi). Summing up over all agents gives,

∑
i

p · x̃i + q · g̃ >
∑
i

p · xi + q · g. (i)

But by (a),

∑
i

p · x̃i +
∑
i

qi · ỹi −
∑
i

p · ωi = (p,q) · (
∑
i

(x̃i − ωi), g̃) ≤

(p,q) · (
∑
i

(xi − ωi),g) =
∑
i

p · xi +
∑
i

qi · yi −
∑
i

p · ωi. (ii)

Now (ii) yields a contradiction of (i), which proves the theorem.

Finally, we get the first welfare theorem as an immediate consequence of this.

Corollary 3.1 If a ∈ LE(ω, θ), a is Pareto efficient.

Proof/

By the definition of Lindahl equilibrium, there exists a price vector (p, q) such that

(a) (p, q) ∈ MRT(
∑I

i=1(xi − ωi),g) and (b) for all i ∈ I, (p, q) ∈ MRSi(xi, yi). But

then by Theorem 3, a is Pareto efficient.
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4. Some comments on the literature

Milleron (1972) contains a version of our Theorem 1 (page 430, Theorem 2.1).

However, he is mostly interested in the welfare theorems as they relate to public com-

petitive equilibrium, the existence of Lindahl equilibrium, and the non-convergence of

the core to the set of Lindahl equilibria, along with some incentive issues. He does not

characterize Pareto efficient allocations in terms of Samuelson prices, which is the main

focus of the present paper. We note also that the second welfare theorem as applied to

public competitive equilibrium is much weaker than the one for Lindahl equilibrium,

since the set of public competitive equilibria is generally much larger than the set of

Lindahl equilibria of an economy.

The relationship of the necessary condition for efficiency derived here and the one

derived in Campbell and Truchon (1988) is worth explaining at some length.6 They

assumed that there is only one private good and a finite number of public goods,

K in their notation. Production is carried out by one firm, which faces cost γ(y)

in terms of the private good in order to produce a vector y of public goods, where

γ is a differentiable convex increasing function. The production set of the unique

firm is P = {(z, y) ∈ <1+K | z + γ(y) ≤ 0}. Preferences are represented by quasi-

concave differentiable utility functions, where the marginal utility of the private good

is positive everywhere for every consumer. Each consumer i faces a lower bound bi for

his consumption of the private good. The marginal rate of substitution for public good

k relative to the unique private good for consumer i is denoted by πi
k, and the vector

of these for consumer i is denoted πi. The partial derivative of γ with respect to the

kth public good is denoted by γk.7

The Samuelson-type condition in Campbell and Truchon is condition GOC, which

can be expressed as follows: for all k, there exist vk ≤ γk, and, for all i, there exists a

6 We thank the referee for proposing that the relationship with Campbell and Truchon’s results be
presented in this way.

7 At the boundary, all of these derivatives are one-sided derivatives taken from the interior.
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vector ψi in the box [0, πi] ⊂ <K such that:∑
i

ψi
k = vk, (γk − vk)yk = 0, k = 1, . . . ,K, and (πi −ψi)(xi − bi) = 0, for all i.

In writing the MRT and WMRS correspondences, given the existence of only one private

good desired by all agents, it is convenient to normalize its price to be equal to one.

Then the definitions of these correspondences are, under the Campbell and Truchon

assumptions:

WMRSi(x, y) = {(1, q1, . . . , qI) ∈ <1+IK | qi = πi if xi > bi and qi ∈ [0, πi] if xi = bi},

MRT(z, y) = {(1, q1, . . . , qI) ∈ <1+IK |
∑
i

qik = γk if yk > 0 and
∑
i

qik ≤ γk if yk = 0}.

These sets are well-defined under the Campbell and Truchon assumptions. Then the

relationship of the two sets of results under these assumptions is as follows: there exists

a vector (1, ψ1, . . . , ψI) that satisfies condition GOC if and only if (1, ψ1, . . . , ψI) ∈

MRT(−γ(y), y) and (1, ψ1, . . . , ψI) ∈WMRSi(xi, y) for all i.

Finally, some notes on papers that are tangentially relevant. Saijo (1990) addresses

a quite different point arising from Campbell and Truchon than we do; namely, he shows

that the robustness of boundary Pareto efficient allocations observed by Campbell and

Truchon is not a phenomenon specific to public good economies, since it also happens in

exchange economies. Manning (1993, chapter 3) contains an extension of Foley’s (1970)

results to economies with local public goods, using assumptions based on Foley’s, such

as constant returns to scale and ruling out the private goods boundary. Manning (1994)

develops the analysis of local public goods further by utilizing techniques based on the

present paper.

5. Conclusion

In conclusion, our main purpose in this paper is to provide Samuelson conditions

for economies with many public and private goods without assuming monotonicity or
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differentiability. The conditions we provide treat both interior and boundary optima in

a unified way. Intuitively, our results are easy to understand. Consider a one private one

public good economy where the private good price is normalized to one. At boundary

allocations, their are many price lines which support the weakly preferred set (the same

is true at kinks in the interior of the consumption set.) The set of slopes of these lines of

support can be interpreted as the set of marginal willingnesses to pay (MWP) for public

good. Our conditions say that if an allocation is Pareto optimal, it is possible to find

a selection from each agent’s MWP correspondence such that their sum is an element

of each firm’s marginal rate of transformation correspondence (which may also be set-

valued at kinks or at boundaries). In the body of the paper, we generalize this idea to

many goods, and use the use same basic approach to provide sufficient conditions for

Pareto optimality, and prove first and second welfare theorems that include boundary

allocations.
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