
The Bargaining Problem Without Convexity:†

Extending the Egalitarian and Kalai-Smorodinsky Solutions.

John P. Conley*

and

Simon Wilkie**

† Published as: John P. Conley and Simon Wilkie ”The Bargaining Problem with-
out Convexity: Extending the Egalitarian and Kalai-Smorodinski Solutions”, Eco-
nomics Letters, Vol. 36, 1991, pp. 365-9. We wish to thank William Thomson for
advice and comments. All errors remain our own.

* Department of Economics, UIUC, j.p.conley@vanderbilt.edu

** Bell Communications Research



Abstract

We relax the assumption used in axiomatic bargaining theory that the
feasible set be convex. Instead we require only that it be comprehensive. We
show that on this domain, Kalai’s (1977) characterization of the Egalitarian
solution remains true, as does Kalai and Smorodinsky’s (1975) theorem if we
use weak Pareto optimality.



1. Introduction

An n-person bargaining problem consists of a pair (S, d) where S is a non-empty

subset of <n, and d ∈ S. The set S is interpreted as the set of utility allocations that are

attainable through joint action by all n agents. If the agents fail to reach an agreement,

then the problem is settled at the point d, which is called the disagreement point. A

bargaining solution F , defined on a class of problems Σn, is a map that associates with

each problem (S, d) ∈ Σn a unique point in S. In the axiomatic approach to bargaining

we start by specifying a list of properties (Pareto-optimality, for example) that we

would like a solution to satisfy. If it can be shown that there is a unique solution that

satisfies a given list of axioms, then the solution is said to be characterized this list.

It is common to restrict the domain to problems with convex feasible sets. The

standard justification for restricting attention to convex problems is an assumption

that agents’ preferences can be represented by von Neumann–Morgenstern utility func-

tions, and then admitting the use of lotteries. We find this approach unappealing,

for two reasons. First, the von Neuman-Morgenstern hypothesis is often rejected in

empirical studies and several alternatives have been proposed, see Fishburn (1989) for

a systematic exposition. Second, if lotteries are allowed the interpretation of the ax-

ioms becomes problematic, see Conley and Wilkie (1989). Recently several papers have

adopted the axiomatic approach without the convexity assumption, see Anant et al.

(1990), Herrero (1989), and Kaneko (1980).

In this paper we require only that the feasible set be comprehensive. This is equiv-

alent to assuming free disposal in any underlying economic problem. Our results may

be stated succinctly: (1) on our domain, there does not exist a solution that satis-

fies strong Pareto optimality and symmetry; (2) if we replace strong Pareto-optimality

with weak Pareto-optimality, then Kalai and Smorodinsky’s characterization of their

solution on the domain of convex problems may be extended to the domain of compre-

hensive problems; and (3) Kalai’s characterization of the egalitarian solution may be

extended to the domain of comprehensive problems.
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2. Definitions and Axioms

We start with some definitions and formal statements of the axioms used in the

characterizations. Given a point d ∈ <n, and a set S ⊂ <n, we say S is d-comprehensive

if d ≤ x ≤ y and y ∈ S implies x ∈ S.1

The comprehensive hull of a set S ⊂ <n, with respect to a point d ∈ <n is the smallest

d-comprehensive set containing S:

comp(S; d) ≡ {x ∈ <n | x ∈ S or ∃ y ∈ S such that d ≤ x ≤ y}. (1)

The convex hull of a set S ⊂ <n is the smallest convex set containing the set S:

con(s) ≡

{
x ∈ <n | x =

n+1∑
i=1

λiyi where

n+1∑
i=1

λi = 1, λi ≥ 0 ∀ i, and yi ∈ S ∀ i

}
. (2)

Define the weak Pareto set of S as:

WP (S) ≡ {x ∈ S | y � x implies y 6∈ S}. (3)

Define the strong Pareto set of S as:

P (S) ≡ {x ∈ S | y ≥ x implies y 6∈ S}. (4)

The domain of bargaining problems considered in this paper is Σnc . This is defined

as the class of pairs (S, d) where S ⊂ <n and d ∈ <n such that:

A1) S is compact.

1 The vector inequalities are represented by ≥, >, and �.
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A2) S is d-comprehensive.

A3) There exists x ∈ S such that x� d.

The axioms used in this paper are:

Weak Pareto-Optimality (W.P.O.): F (S, d) ∈WP (S).

A permutation operator, π, is a bijection from {1, 2, . . . , n} to {1, 2, . . . , n}. Πn is the

class of all such operators. Let π(x) = (xπ−1(1), xπ−1(2), . . . , xπ−1(n))
2 and π(S) = {y ∈

<n | y = π(x)x ∈ S}.

Symmetry (SYM): If for all permutation operators π ∈ Πn, π(S) = S and π(d) = d,

then F i(S, d) = F j(S, d) ∀ i, j.

An affine transformation on <n is a map, λ : <n → <n, where for some a ∈ <n and b ∈

<n++, λ(x) = a+ bx. Λn is the class of all such transformations. Let λ(S) = {y ∈ <n |

y = λ(x), x ∈ S}.

Scale Invariance (S.INV): ∀ λ ∈ Λn, F (λ(S), λ(d)) = λ(F (S, d)).

Translation Invariance (T.INV): ∀ x ∈ <n, F (S + {x}, d+ x) = F (S, d) + x.

Strong Monotonicity (S.MON): If S ⊂ S′ and d = d′, then F (S′, d′) ≥ F (S, d).

The Ideal Point of a problem (S,d) is defined as:

a(S, d) ≡ (max
x∈S
x≥d

x1,max
x∈S
x≥d

x2, . . . ,max
x∈S
x≥d

xn). (5)

Restricted Monotonicity (R.MON): If S ⊂ S′, d = d′, and a(S, d) = a(S′, d′), then

F (S′, d′) ≥ F (S, d).

3. The Results

First we show the impossibility result.

2 Subscripts indicate the components of a vector.
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Theorem 1. 6 ∃ F : Σnc → <
n such that F satisfies SYM and PO.

Proof/

Consider the problem (S, d) where S ≡ comp({(1, 2)
⋃

(2, 1)}; (0, 0)) and d ≡ (0, 0).

By PO, F (S, d) = (2, 1) or F (S, d) = (1, 2). But this contradicts SYM.

Now we consider the Kalai-Smorodinsky solution, K:

K(S, d) ≡ max [x ∈ S | x ∈ con(a(S, d), d)] , (6)

where max is with respect to the partial order on Rn. The axioms used are equivalent

to those used by Kalai and Smorodinsky (1975) to characterize K on the convex domain

with two agents, except that only weak Pareto-optimality is used. For further discussion

see Kalai and Smorodinsky (1975) and Thomson (1986).

Theorem 2. A solution F on Σnc satisfies SYM, S.INV, W.P.O, and R.MON if and

only if it is the Kalai-Smorodinsky solution.

Proof/

The proof that K satisfies the axioms is elementary and is omitted. Conversely let

F be a solution satisfying the four axioms. Given any (S, d) ∈ Σnc , assume by S.INV

that the problem has been normalized such that d = 0 and a(S, d) = (β, . . . , β) ≡ y.

Then K(S, d) = (α, . . . , α) ≡ x for some α > 0. Let T be defined as:

T ≡ comp(y; 0) \ {x+ <n++} (7)

and consider the problem (T, 0). We distinguish two cases:

Case 1) S ⊂ <n+. Since S is comprehensive and x ∈WP (S), we have S ⊆ T . Also, since T

is symmetric, d = 0, and x is the only symmetric element WP (T ), by W.P.O. and

SYM, F (T, 0) = x. However, since S ⊂ T , and a(S, 0) = a(T, 0) = y, by R.MON

F (S, 0) ≤ F (T, 0) = x

Now let T ′ be defined by,
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T ′ ≡ comp[(β, 0, . . . , 0), (0, β, . . . , 0), . . . , (0, . . . , β), x; 0]. (8)

Consider the problem (T ′, 0). Since T is symmetric, d = 0, and x is the only

symmetric element in WP (T ′), then by W.P.O. and SYM, F (T ′, 0) = x. Also,

since T ′ ⊂ S and a(S, d) = a(T ′, 0) = y, by R.MON, F (S, d) ≥ F (T ′, d) = x. Thus

F (S, d) = x = K(S, d).

Case ii) S 6⊂ <n+. Let V be defined as follows,

V ≡ T
⋃{ ⋃

π∈Π

π(S)

}
. (9)

Note that V is symmetric and S ⊂ V . If we replace

(T, 0) the previous argument with (V, 0) the proof goes through as before.

Last we examine the egalitarian solution, E,

E(S, d) ≡ {max [x ∈ S | xi − di = xj − dj ∀ i, j ∈ (1, . . . n)]} . (10)

We show that Kalai’s (1977) characterization of E is true on the comprehensive

domain.

Theorem 3. A solution F on Σnc satisfies SYM, T.INV, W.P.O, and S.MON if and

only if it is the egalitarian solution.

Proof/

The proof that E satisfies the four axioms is elementary and is omitted. Conversely

let F be a solution satisfying the four axioms. Given any (S, d) ∈ Σnc , we can assume

by T.INV that the problem has been normalized such that d = 0. Thus E(S, d) =

(α, . . . , α) ≡ x for some α > 0. Now let T be defined by:
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T ≡ comp(x; 0), (11)

and consider the problem (T, 0). Since T is symmetric, d = 0, and x is the only

symmetric element of WP (T ), by W.P.O. and SYM, F (T, d) = x. Also, since S is

comprehensive T ⊆ S. Hence, by S.MON, F (S, d) ≥ x.

By assumption, S is compact. Thus, there exists β ∈ < such that x ∈ S implies (

−β, −β, . . . , −β) ≤ (x1, x2, . . . , xn) ≤ (β, β, . . . , β). Let Z be the symmetric closed

hypercube defined by:

Z ≡ {y ∈ <n | ∀ i | y | ≤ β}. (12)

Also define T ′ as:

T ′ ≡ Z \ {x+ <n++}. (13)

Consider the problem (T ′; 0). Since T ′ is symmetric, d = 0 and x is the only symmetric

element of WP (T ′), by W.P.O. and SYM, F (T ′, d) = x. But since S ⊆ T ′, by S.MON,

F (S, d) ≤ x. Thus, F (S, d) = x = E(S, d).

4. Concluding Comments

In this paper we have examined the Kalai-Smorodinsky and Egalitarian bargaining

solutions without the hypothesis that the feasible set is convex. We require only that

the feasible set be comprehensive. We show that well known characterizations of these
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solutions extend to this domain. The comprehensive domain arises naturally from an

assumption of free disposal on the underlying economic problem.

In a recent paper, Anant et al (1990) show that the Kalai-Smorodinsky theorem

can be extended directly on the domain of two person “NE-Regular” problems where,

below the ideal point the weak Pareto and Pareto sets coincide. Our first theorem shows

that it is impossible to extend their result to the domain of comprehensive problems.

However, since the set of comprehensive problems includes this class of NE-Regular

problems, and the Kalai-Smorodinsky solution is always strongly Pareto-optimal on

this class, our axioms imply strong Pareto-optimality on the domain of NE-Regular

problems. Thus our second theorem implies the theorem of Anant et al (1990).

The work of Anant et al (1990) and this paper, suggests that the assumption

of a convex feasible set is not essential for any Monotone Path Solution. Since any

Monotone Path Solution is well-defined on the domain of comprehensive problems any

characterization found on the domain of convex problems should be easy to adapt.

This class of solutions is discussed and axiomatized Thomson (1986), pp 52-57. It is

straightforward to extend this result to our domain.

The solution proposed by Nash (1950) is not well defined on our domain. We

propose and characterize a new solution, which on the convex domain coincides with the

Nash solution in a companion paper, Conley-Wilkie (1989). An alternative approach,

allowing a solution to be a correspondence, is used in Kaneko (1980) and Herrero

(1989).

References

Anant, T.C.A, Badal Mukherji and Kaushik Basu (1990): “Bargaining Without
Convexity, Generalizing the Kalai-Smorodinsky Solution,” Economics Letters, 33,
pp. 115-119.

Conley, John and Simon Wilkie (1989): “The Bargaining Problem Without Con-
vexity,” Bellcore Economics DP, #63.

7



Fishburn, Peter (1989): Non-Linear Preference and Utility Theory. John Hopkins
University Press.

Herrero, Maria-Jose (1989): “The Nash Program: Non-convex Bargaining Prob-
lems,” Journal of Economic Theory, 49, pp266-277.

Kalai, Ehud (1977): “Proportional Solutions to Bargaining Situations: Interpersonal
Utility Comparisons,” Econometrica, 45, pp.1623-37.

Kalai, Ehud, and Meir Smorodinsky (1975): “Other Solutions to Nash’s Bargain-
ing Problem,” Econometrica, 43, pp.513-8.

Kaneko, Mamoru (1980): “An Extension of Nash Bargaining Problem and the Nash
Social Welfare Function,” Theory and Decision, 12, pp135-148.

Nash, John (1950): “The Bargaining Problem,” Econometrica, 18, pp155-62.

Thomson, William (1986): Bargaining Theory: The Axiomatic Approach. Unpub-
lished Manuscript, Rochester New York.

8


