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Abstract

We study a model with local public goods in which agents’ crowding ef-
fects are formally distinguished from their taste types. It has been shown that
the core of such an economy can be decentralized with anonymous admission
prices (which are closely related to cost share prices). Unfortunately, such
a price system allows for an arbitrary relationship between the public goods
level in a given jurisdiction and the cost to an agent for joining. Formally,
this means that admission prices are infinite dimensional. Attempts to de-
centralize the core with finite price systems such as Lindahl prices suggest
that this is possible only under fairly restrictive conditions. In this paper, we
introduce a new type of price system called finite cost shares. This system
has strictly larger dimension than Lindahl prices but, in contrast to general
cost share prices, is finite. We show that this allows for decentralization of
the core under much more general conditions than are possible with Lindahl
prices.



1. Introduction

The traditional Lindahl equilibrium concept requires that agents with different

tastes face different prices for public goods. As Samuelson (1954) pointed out, this gives

agents an incentive to misrepresent their preferences and makes it unlikely that a market

mechanism based on such prices would be able to efficiently provide public goods. In

response, Tiebout (1956) argued that many types of public goods are “local” rather

than “pure” and that competition among providers of local public goods would induce

effective preference revelation as consumers “vote with their feet” for the community

providing public good levels which best suit their tastes.

Tiebout’s argument provided the seed for a large theoretical literature that ex-

plores the possibility of decentralization of optimal local public goods provision in a

variety of contexts.1 One problem uncovered by this research is that when crowding is

differentiated (that is, when the crowding effects of an agent depend upon his type), in

general decentralization with anonymous prices is not possible. Conley and Wooders

(1997a) observe that anonymous decentralization is not possible because the existing

differentiated crowding models tied together an agent’s tastes and external effects and

propose a new model in which these two characteristics are formally distinguished from

one another. The new “crowding types” model allows them to show that the core can

be decentralized using a Tiebout admission price system that specifies a single price

that an agent of a particular crowding type must pay to join a jurisdiction with a spe-

cific crowding profile and level of public goods. The important feature of the Tiebout

price system is that it is anonymous in the sense that it depends only on an agent’s

observable crowding type and not on his unobservable tastes.

A significant criticism of the Tiebout price system, however, is that the admis-

sion prices generally are infinite dimensional— that is, one price is required for each

crowding type, for each jurisdiction, and for each of the continuum of possible public

good levels. One has to be a little bit suspicious about the real-world relevance of

1 Early papers include Pauly (1970), McGuire (1974), Berglas (1976), Wooders (1978), and Boadway
(1980). See Conley and Wooders (1997b) or Cornes and Sandler (1996) for recent surveys.
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such prices. Clearly, they would be very costly for firms to specify and very difficult

for consumers to understand. To address the concern of infinite dimensional prices,

Conley and Wooders (1998) study the relationship between the core and the set of

anonymous and nonanonymous Lindahl price equilibria.2 Anonymous Lindahl prices

specify a participation fee and a per unit price for public goods which do not depend on

private information. In contrast, nonanonymous Lindahl prices specify a participation

fee and a per unit price for public goods which may depend on private information.

Under standard convexity conditions, they find that the core and set of nonanony-

mous Lindahl equilibrium states are equivalent.3 However, except when public goods

are produced under constant returns to scale and there is only one crowding type

(crowding is anonymous), the core is generally larger than that of anonymous Lindahl

equilibrium states, confirming the results of Wooders (1978) for anonymous Lindahl

equilibria. Thus, except for the class of economies with linear technology and one type

of agent, the existing literature leaves us with a choice of anonymous decentralization

with an infinite dimensional price system or nonanonymous decentralization with a

finite dimensional price system.

The pure public goods literature considers pricing systems heretofore unexplored in

the context of local public goods economies. Kaneko (1977a,b) was the first to introduce

the notion of cost share equilibrium to a public goods economy. He proves existence of

a cost share equilibrium in an economy with several public goods and shows that the

core of a specific voting game and the set of cost share equilibria coincide.4 Mas-Colell

(1980) characterizes Pareto optimal and core allocations and explores their relation

to the cost sharing equilibria. Mas-Colell and Silvestre (1989) define a cost share

equilibrium concept which is a generalization of the Lindahl equilibrium concept and

2 Barham and Wooders (1998) also explore Lindahl pricing in local public goods economies.

3 See also Wooders(1989, 1997) for related results.

4 Kaneko actually defined the ratio equilibrium for an economy with several public goods. The subse-
quent literature has focused on the single public good case and has settled on the term “cost share
equilibrium”. Also see Diamantaras and Wilkie (1994) who generalize his concept by allowing for
multiple private goods and, more significantly, permitting public goods to be inputs.
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which endogenously derives Lindahl equilibrium profit shares. Weber and Wiesmeth

(1991) show equivalence between the set of Lindahl equilibria described by Mas-Colell

and Silvestre and the set of linear cost share equilibria. Weber and Wiesmeth also find

upper and lower bounds on the relative marginal rates of substitution which characterize

the set of core allocations which can be decentralized by a linear cost share equilibrium.

Also see Diamantaras and Gilles (1996) and Gilles and Diamantaras (1998) who further

extend this research to economies with public projects and multiple private goods and

study the relationship of various notions of the core and cost share equilibria (often

finding negative results).

The purpose of this paper is to generalize the anonymous decentralization results

for local public goods economies, and to connect these results to the public goods

literature mentioned above. More specifically, we define a type of cost share price

system for local public goods economies that is more general than Lindahl prices, but

retains the feature that prices have finite dimension. We call this a finite cost share

price system. Following Weber and Wiesmeth (1991), we define a bounding condition

on marginal rates of substitution and transformation called BAARS. We show that if

the economy satisfies strict small group effectiveness and BAARS, then the core and

nonanonymous finite cost share equilibria are equivalent. This generalizes the class

of economies for which finite decentralization is possible in that we do not require

convexity either in preferences or production. We also show that with a strengthening

of BAARS, but without assuming convexity, if crowding is anonymous then the core

and anonymous finite cost share equilibrium states are equivalent. This contrasts with

Wooders (1978) who assumes that production is linear and preferences convex to show

decentralization with anonymous Lindahl prices.

2. A Local Public Goods Model

We consider an economy with one private good and one local public good. There
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are I agents indexed i ∈ {1, . . . , I} ≡ I. In Tiebout economies, agents typically find

it optimal to self-select into many “small” jurisdictions for the purpose of consuming

local public goods. An arbitrary jurisdiction of agents is denoted by s ⊂ I and S

denotes the set of all possible jurisdictions. A list of jurisdictions {s1, . . . , sP } ≡ S is a

partition if ∪psp = I and sp ∩ sp = ∅ for all sp, sp such that p 6= p.

Agents are distinguished by two factors: tastes and publicly observable crowding

types. We allow each agent to have one of T different sorts of tastes or preferences,

denoted by t ∈ {1, . . . , T} ≡ T . The mapping τ : I → T assigns a taste type to each

agent in the economy. That is, if agent i is of taste type t, then τ(i) = t. Each agent

also possesses one of C different sorts of publicly observable crowding types, denoted

c ∈ {1, . . . , C} ≡ C. The mapping κ : I → C assigns a crowding type to each agent in

the economy. The crowding profile of a jurisdiction s ∈ S is the mapping K : S → ZC+

given by5

K(s) ≡
(
|s1|, . . . , |sC |

)
,

where i ∈ sc if and only if i ∈ s and κ(i) = c, and where | • | denotes the cardinality

of a set. Thus, we denote an arbitrary profile of crowding characteristics by n =

(n1, . . . , nC) ∈ ZC+ where nc is the number of agents with crowding type c.

Finally, if agent i ∈ I has taste type t and crowding type c, we can represent

that agent’s overall type by the mapping θ : I → C × T . That is, if θ(i) = (c, t) then

κ(i) = c and τ(i) = t. To further identify groups of individuals possessing a proscribed

characteristic, we let Sc ⊂ S denote the set of jurisdictions which contain at least one

individual with crowding type c. We similarly define St and Sct.

In this economy, agents are members of exactly one jurisdiction and consume one

private good, x, and one public good, y. Each agent i has an endowment of private good

ωτ(i) and a utility function uτ(i) : <×<+ ×ZC+ → <. More specifically, if θ(i) = (c, t),

then the utility function for agent i is given by ut(xi, y, n) = xi + ht(y, n), where xi

is a level of private good, y is a level of public good, and n is the crowding profile of

5 Here and throughout we use the convention that Z denotes the set of integers.

4



the jurisdiction in which i resides. Note that this specification of preferences ensures

that agents are only directly affected by the observable crowding types of other agents

and not their unobservable preferences. In addition to quasi-linearity, we assume that

preferences are monotonic in the public good.

Monotonicity in Consumption: ht(y, n) ≥ ht(y, n) for all t ∈ T , n ∈ ZC+ , and

y, y ∈ <+ such that y ≥ y.

The crowding profile of a jurisdiction also affects public good production. The

production technology is given by the cost function f : <+ × ZC+ → < where f(y, n) is

the cost in terms of private good of producing y public good in jurisdiction with crowd-

ing profile n. As with utility functions, this specification ensures that the production

capabilities of a jurisdiction depend only on its crowding profile and not on consumers’

preferences. We assume that the cost of producing the public good is strictly mono-

tonic.

Monotonicity in Production: f(y, n) ≥ f(y, n) for all n ∈ ZC+ , and y, y ∈ <+ such

that y ≥ y.

A feasible state of the economy is a list,

(X,Y, S) ≡ ((x1, . . . , xI), (y
1, . . . , yP ), (s1, . . . , sP )),

where X is a list of private good for each agent, Y is a list of public good production

plans for each jurisdiction, and S is a partition of the population, such that

I∑
i=1

(ωτ(i) − xi)−
P∑
p=1

f(yp,K(sp)) ≥ 0.

The set containing all feasible states of the economy is denoted F . Similarly, a pair

(x, y) is a feasible allocation for a jurisdiction s ∈ S if,∑
i∈s

(ωτ(i) − xi)− f(ys,K(s)) ≥ 0.

A jurisdiction s ∈ S producing a feasible allocation (x, y) improves upon the state

(X,Y, S) ∈ F if, for all i ∈ s where i ∈ sp in the original feasible state,

uτ(i)(xi, y,K(s)) > uτ(i)(xi, y
sp ,K(sp)).
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A feasible state of the economy (X,Y, S) ∈ F is a core state if it cannot be improved

upon by any jurisdiction.

Finally, the set of optimal public good levels for a jurisdiction s ∈ S, denoted Y (s),

is

Y (s) ≡
{
y ∈ <+

∣∣ y = argmax
y

∑
i∈s

ωτ(i) +
∑
i∈s

hτ(i)(y,K(s))− f(y,K(s))
}
.

That is y ∈ Y (s) maximizes total utility in jurisdiction s.

3. Cost Share Systems and Equilibria

A cost share system is a list, σ = (σ11, . . . , σct, . . . , σCT ), stating for every c ∈ C

and every t ∈ T a function

σct : <+ × Sct → <.

This cost share function for an agent of type (c, t) gives the total contribution necessary

for this agent to be allowed into a jurisdiction s providing public goods level y. This is a

very broad notion of cost-sharing analogous to definitions of cost sharing given by Mas-

Colell (1980), Mas-Colell and Silvestre (1989), and Weber and Wiesmeth (1991). Note

that at this point we have not required that the cost shares in a cost share system sum

to total production costs. Although it is clear that in equilibrium jurisdictions must

cover production costs, we might want different restrictions on cost shares defined over

“potential” jurisdictions which do not appear in equilibrium partitions. For this reason,

it is more straightforward to impose the feasibility requirement in the definition of a

cost share equilibrium rather than in the definition of a cost share system.

Since tastes are not observable in this economy, finding cost shares which depend

at most on an individual’s crowding type and not on his or anyone else’s taste type is

of particular interest. Formally, a cost share system has fully anonymous prices (FAP)

if it satisfies the following:
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(FAP): for all s, ŝ ∈ S, if K(s) = K(ŝ), then for all y ∈ <+ and for all t, t̄ ∈ T it

must be that σct(y, s) = σct̄(y, ŝ).

This condition states that a fully anonymous cost share system is one for which any

two individuals possessing the same crowding type and who reside in jurisdictions with

identical crowding profiles must face the same cost shares. As is pointed out in Conley

and Wooders (1997a), FAP is strong notion of price anonymity. A different interpre-

tation of anonymity might allow two jurisdictions with identical crowding profiles to

have different prices. In that case, anonymity would require only that the prices across

jurisdiction be commonly available to agents with the same crowding characteristic but

not necessarily the same tastes. Of course, using the stronger notion of price anonymity

in this paper only stengthens the positive conclusion of Theorem 5.6

A cost share equilibrium consists of a feasible state of the economy (X,Y, S) ∈ F

and a cost share system σ such that

1. for all sp ∈ S, for all agents i ∈ sp where θ(i) = (c, t), all alternative jurisdic-

tions s̄ ∈ Sc, and all levels of public good y ∈ <+,

ωt + ht(y
p,K(sp))− σct(yp, sp) ≥ ωt + ht(y,K(s̄))− σct(y, s̄),

2. for all sp ∈ S, ∑
i∈sp

σκ(i)τ(i)(y
p, sp)− f(yp,K(sp)) = 0,

3. for all alternative jurisdictions s̄ ∈ S, and for all y ∈ <+,

∑
i∈s̄

σκ(i)τ(i)(y, s̄)− f(y,K(s̄)) ≤ 0.

Condition (1) requires that all agents maximize utility given the cost share system.

Condition (2) requires that equilibrium jurisdictions exactly cover their production

6 Also, the difference between the two interpretations of anonymity is not an issue in the two counterex-
amples that follow – both examples only consider prices within a single jurisdiction.
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costs. Condition (3) requires that, given the cost share system, no firm can make

positive profits by entering the market and offering to provide any sort of jurisdiction.7

If (X,Y, S) and σ constitute a cost share equilibrium, and σ is a fully anonymous

cost share system, then we will say that (X,Y, S) and σ constitute an anonymous cost

share equilibrium. We now consider how Tiebout admission price systems and Lindahl

price systems fit within this broader notion of cost shares.

3.1 Tiebout Admission Prices

The Tiebout admission price system as defined in Conley and Wooders (1997a),

for example, is a special class of the cost share systems. This class of cost share system

states for each crowding type, for each jurisdiction, and for each public good level an

“admission” price. That is, a Tiebout admission price system states for each c ∈ C, a

function

σAc : <+ × Sc → <

which indicates the total contribution made by an agent of that type to enter a jurisdic-

tion offering a fixed level of public goods and possessing a particular crowding profile.

A Tiebout equilibrium is an anonymous cost share equilibrium in which the equilibrium

cost shares are Tiebout admission prices. Conley and Wooders proved equivalence be-

tween the core and the set of Tiebout equilibrium states.8 This result demonstrates

that there is no need to require prices for public goods to depend on unobservable

characteristics of agents and thus, is a type of Tiebout theorem. However, although

the results applied to a broad class of economies (assumptions such as monotonicity,

convexity, and continuity are not required), the Tiebout admission price system gen-

7 Sergui Hart pointed out in Conley and Wooders (1997a) that condition (2) is implied by condition (3)
and feasibility. As before, condition (2) is maintained here to emphasize that jurisdiction formation is
competitive in that equilibrium jurisdictions make zero profit.

8 The core decentralization results is dependent upon the an assumption called Small Group Effective-
ness which is a formalization of the fact that they consider a local public goods economy and not a
pure public goods economy. This assumption is stated and discussed in a later section of this paper.
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erally requires a continuum of prices — one price for every crowding type, for every

possible jurisdiction, for every possible level of public good. For this reason, it seems

unlikely that the Tiebout admission price system would ever be observed outside of a

purely theoretical context.

3.2 Lindahl Prices

To find more widely applicable core decentralization results, the classic notion of

a Lindahl equilibrium was modified for use in a crowding types economy. The Lindahl

price system is a class of cost share system which specifies for each agent and for each

jurisdiction a “participation” price and a “per-unit” price for consuming the local public

good. That is, a Lindahl price system states for each c ∈ C and t ∈ T two functions,

act : Sct → < and `ct : Sct → <,

which combine to give a cost share function

σLct(s) ≡ act(s) + `ct(s)y.

Since the Lindahl prices do not depend on the level of public goods offered in a juris-

diction, Lindahl prices offer a finite-dimensional pricing space. Such a price system is

anonymous or nonanonymous depending on whether it does or does not satisfy FAP,

respectively. Conley and Wooders (1998) prove that for convex, monotonic and differ-

entiable economies satisfying strict small group effectiveness, the set of nonanonymous

Lindahl states is equivalent to the core and hence to the set of Tiebout admission price

equilibrium states. They also show the set of anonymous Lindahl equilibria is generally

smaller than the core – many core states cannot be decentralized with Lindahl prices

satisfying FAP. In constrast to the larger class of economies which can be decentralized

with anonymous Tiebout admission prices, only when there is exactly one crowding

type and the technology exhibits constant returns to scale can core states generally be

decentralized using anonymous Lindahl prices.
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3.3 Finite Cost Shares

The main contribution of this paper is to explore another class of cost share systems

we call finite cost shares. In this class of systems we hope to find decentralizing prices

which are both finite dimensional and satisfy FAP. First we will provide a general

definition of a finite cost share system, and then we will explore conditions under

which they can decentralize the core.

A finite cost share system states for every type of agent a “participation price” and

a “sharing ratio” of the cost of production. That is, a finite cost share system states

for each c ∈ C, for each t ∈ T two functions9,

αct : <+ × Sct → < and βct : <+ × Sct → <,

which combine to give a cost share function

σFct(y, s) ≡ αct(y, s) + βct(y, s)f(y,K(s)),

and where, for every s ∈ S, the image sets over y of each αct(y, s) and βct(y, s) are finite

sets. Note that without this final restriction, we could clearly find fully anonymous cost

shares that decentralize core states by setting each βct(y, s) ≡ 0 and then letting the

αct(y, s) be the Tiebout admission prices. We say that the finite cost shares are singled-

valued if, for each s ∈ S, αct(y, s) and βct(y, s) are both constant with respect to y.

4. Finite Cost Share Equilibrium and the Core

In this section, we explore the relationship between the core and the set of finite

cost share states. Our first theorem states that anonymous and nonanonymous finite

9 Both the participation price and the sharing ratio are contained in <, and no restriction is made on
their signs.
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cost share equilibria states are in the core. Combined with subsequent theorems show-

ing conditions under which the core can be decentralized with various types of finite

cost share prices, Theorem 1 implies a series of core equivalence results.10

Theorem 1. If the state (X,Y, S) ∈ F and the finite cost share system σF constitute

a finite cost share equilibrium, then (X,Y, S) is in the core.

Proof/

See Appendix.

The next result is a First Welfare Theorem which is an immediate corollary of

Theorem 1.

Theorem 2. If the state (X,Y, S) ∈ F and σF constitute a finite cost share equilibrium

then (X,Y, S) is Pareto optimal.

Proof/

See Appendix.

We now restrict attention to economies in which all gains from coalition size are

realized in small jurisdictions. An economy is said to satisfy Strict Small Group Effec-

tiveness (SSGE) if there exists a positive integer B such that

1. for all core states (X,Y, S) and all sp ∈ S, it holds that |sp| ≤ B;

2. for all t ∈ T and c ∈ C, either |{i ∈ I | κ(i) = c, τ(i) = t}| > B or |{i ∈ I | κ(i) =

c, τ(i) = t}| = 0.

The first condition says that in all core states, agents are partitioned into jurisdic-

tions bounded in size. The second condition is a thickness condition; either there are

enough of a particular type of individual to fill the largest possible optimal jurisdiction,

or no agent of that type appears in the economy at all.

The small group effectiveness assumption is one way to formalize the difference

between a local public good economy and a pure public good economy. The primary

10 For core decentralization results which do not restrict prices to be finite, refer to Conley and Wooders
(1997a, 1998).
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implication of SSGE is that the core jurisdictions will be small in comparison to the

whole population. We now present two lemmas which are useful in proving the results

that follow. The first lemma, a special case of Wooders (1983, Theorem 3) for games

with strictly effective small groups, states that the core of an economy satisfying SSGE

has the equal treatment property. The second lemma shows that the implicit contri-

butions of all agents in a core jurisdiction are equal. These two lemmas are proved in

Conley and Wooders (1997a).

Lemma 1. Let (X,Y, S) be a core state of an economy satisfying SSGE. For any

two individuals i, î ∈ I such that θ(i) = θ(̂i) = (c, t), if i ∈ sp and î ∈ sp̂ then

ut(xi, y
p,K(sp)) = ut(xî, y

p̂,K(sp̂)).

Lemma 2. Let (X,Y, S) be a core state of an economy satisfying SSGE. If there is

a core state jurisdiction sp ∈ Sct ∩ Sct̂, then for any two individuals i, î ∈ sp where

θ(i) = (c, t) and θ(̂i) = (c, t̂), it must be the case that ωt − xi = ωt̂ − xî.

In a pure public good framework, Weber and Wiesmeth (1991) show that there are

upper and lower bounds on individuals’ marginal rates of substitution such that only

core collections satisfying those bounds can be decentralized by cost shares. In this

local public good framework, we find similar conditions which must hold in order that

a core allocation can be decentralized by finite cost shares. We first define an agent’s

arc-rate of substitution and explore its properties. We then state a bounding condition

on the arc-rates of subtitution which allow core decentralization. Finally, we provide

examples demonstrating why the bounding restriction is required.

Recall that Y (s) defines the optimal levels of public goods for an arbitrary jurisdic-

tion s ∈ S. Let ys ∈ Y (s) and then for each t ∈ T , define an individual’s (normalized)

arc-rate of substitution between ys and any y′ 6= ys as:

Mt(y
′, ys, s) ≡ ht(y

s,K(s))− ht(y′,K(s))

f(ys,K(s))− f(y′,K(s))
.

We first need to explore some properties of this function before stating a bounding

condition needed to prove our primary results.
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First, by monotonicity of f(y, n) and each ht(y, n), it follows that each Mt(y
′, ys, s)

is bounded below by 0 for y′ 6= ys. Second, by choice of ys, we know that for all y′ ∈ <+,

∑
i∈s

ωτ(i) +
∑
i∈s

hτ(i)(y
s,K(s))− f(ys,K(s)) ≥

∑
i∈s

ωτ(i) +
∑
i∈s

hτ(i)(y
′,K(s))− f(y′,K(s)),

which immediately implies that for all y′ > ys,

∑
i∈s

Mτ(i)(y
′, ys, s) =

∑
i∈s

hτ(i)(y
s,K(s))− hτ(i)(y

′,K(s))

f(ys,K(s))− f(y′,K(s))
≤ 1.

So since each Mt(y
′, ys, s) ≥ 0 and

∑
i∈sMτ(i)(y

′, ys, s) ≤ 1 for y′ > ys, it must be the

case that each Mt(y
′, ys, s) is bounded above on y′ > ys. Therefore,

sup
y′>ys

Mt(y
′, ys, s) and inf

y′<ys
Mt(y

′, ys, s)

are well-defined functions for all t ∈ T . We can now state a condition called Bounded

Aggregate Arc-Rate of Substitution (BAARS) which we will need to decentralize core

states with finite cost shares.

(BAARS): For all s ∈ S,

∑
i∈s

sup
y′>ys

Mτ(i)(y
′, ys, s) ≤ 1 ≤

∑
i∈s

inf
y′<ys

Mτ(i)(y
′, ys, s).

Upon first glance, this condition may seem trivial. As the above development

indicates, optimality of ys requires that

∑
i∈s

Mτ(i)(y
′, ys, s) ≤ 1

for any y′ > ys, and ∑
i∈s

Mτ(i)(y
′, ys, s) ≥ 1

for any y′ < ys. That is, in the y′ > ys case optimality requires that the sum of the

agents’ arc-rates of substitution for any y′ is bounded above by 1, and in the y′ < ys
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case optimality requires that the sume of the agents’ arc-rates of substitution for any

y′ is bounded below by 1. But BAARS further requires that, in the first case, the sum

across all agents of each agent’s largest arc-rate of substitution is bounded above by

1.11

We now demonstrate that SSGE and BAARS are sufficient to allow the core to

be decentralized with nonanonymous finite cost share prices. Combined with Theorem

1, this implies that the core and nonanonymous finite cost share equilibrium states are

equivalent.

Theorem 3. Let (X,Y, S) be a core state in an economy satisfying SSGE and BAARS.

Then there exists a σF such that (X,Y, S) and σF constitute a nonanonymous finite

cost share equilibrium.

Proof/

See Appendix.

We now consider two examples that demonstrate the limits on the ability of finite

cost shares to support core allocations. Example 1 shows that, in an economy which

does not satisfy BAARS, core allocations may not be supportable by finite cost shares.

The second example shows that, without further regularity conditions on cost and

utility functions (recall that we have only assumed monotonicity), the finite cost shares

that decentralize core allocations are not generally single-valued.

Example 1: Nonequivalence of the core and the finite cost share equilibria with dif-

ferentiated crowding when the economy does not satisfy BAARS.

Consider a world with two crowding types and two taste types. Although generally

this would mean that there are four types of people in the world, here we consider a

differentiated crowding model in which the crowding types and the taste types are

11 Note that this condition is apparently stronger than the bounded relative rates of substitution imposed
on individuals preferences by Weber and Wiesmeth (1991). However, whereas Weber and Wiesmeth
assume that preferences are convex, we make no assumptions about public good preferences other than
monotonicity.
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perfectly correlated. That is, there are only two types of people in the world, people

with crowding type 1 and taste type 1, and people with crowding type 2 and taste

type 2. This means that crowding is differentiated. Suppose that crowding occurs in

consumption and that only two-person “mixed” jurisdictions get any utility from the

public good. The utility functions of the two types are as follows:

u1(x, y, n) =

{
x+ y2 for y ≤ 1 and if n11 = n22 = 1,
x+ 1 for y > 1 and if n11 = n22 = 1,
x otherwise

u2(x, y, n) =

{
x+ y(2− y) for y ≤ 1 and if n11 = n22 = 1,
x+ y for y > 1 and if n11 = n22 = 1,
x otherwise.

Let the endowments of each type be zero: ω1 = ω2 = 0. The total cost of producing

the public good is given by the function:

f(y, n) = 2y.

It is easily verified that y = 1 is the optimal public good level for any jurisdiction.

First we show that these utility functions do not satisfy BAARS. Note that for

ŝ = {1, 2}

inf
y′<1

M1(y′, 1, ŝ) = inf
y′<1

1 + y′

2
=

1

2

and

inf
y′<1

M2(y′, 1, ŝ) = inf
y′<1

1− y′

2
= 0.

Therefore, ∑
i∈ŝ

inf
y′<1

Mτ(i)(y
′, 1, ŝ) =

1

2
,

which does not satisfy the second inequality in BAARS.

Now suppose there are 10 agents of each type in the economy. One of the core states

will consists of ten two-person jurisdictions of the form (xi, xj , y, s1, s2) = (−1,−1, 1, 1, 1).

That is, each jurisdiction will contain one of each type of agent, and will produce one

unit of public good. In this core state, the utilities of the two types of agents will be

U1 = U2 = 0.
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Notice that, since endowments are equal to zero, single-person jurisdictions get zero

utility. Also, coalitions containing more than two people or any type of “non-mixed”

coalition can get at most zero utility. Finally since the maximum total transferable

utility available to each “mixed” jurisdiction is zero, such a coalition cannot improve

upon itself by producing any other level of public good. Therefore, the state described

above is a core state.

We now show that the above core state cannot be supported with finite cost

shares. Begin by supposing that there are finite cost shares (α11(y, s), β11(y, s)) and

(α22(y, s), β22(y, s)) which support this core state as a nonanonymous finite cost share

equilibrium. Recall that here “finite” means that, for a given s, each αct(y, s) and

βct(y, s) take on finitely many values as y ranges over <+. This means that, given the fi-

nite cost shares, we can partition <+ into a finite number of subsets {Y 1, . . . , Y q, . . . , Y Q}

such that, for each q = 1, . . . , Q and for any y, ŷ ∈ Y q,

αct(y, s) = αct(ŷ, s) and βct(y, s) = βct(ŷ, s).

That is, we partition <+ into finitely many subsets over which each αct(y, s) and each

βct(y, s) are constant with respect to y.

Now let Y q be any set in the partition containing at least two elements.12 For the

rest of this example, we consider only the core state jurisdiction s and so we suppress

this argument in the utility functions, cost functions, and cost share functions. Then

by the assumption that y = 1 maximizes utility for each consumer given these finite

cost shares, for all y1, y2 ∈ Y q and for any core state jurisdiction s,

h1(1)− α11(1)− β11(1)f(1) ≥ h1(y1)− α11(y1)− β11(y1)f(y1)

h1(1)− α11(1)− β11(1)f(1) ≥ h1(y2)− α11(y1)− β11(y1)f(y2).

Then rearranging these expressions we also have

β11(y1)f(y1) ≥ h1(y1)− h1(1) + α11(1)− α11(y1) + β11(1)f(1)

12 That such a set exists is guaranteed by the fact that we are finitely partitioning an infinite set. Therefore
there must be an element of the partition containing an infinite number of elements.
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and

β11(y1)f(y2) ≥ h1(y2)− h1(1) + α11(1)− α11(y1) + β11(1)f(1).

It is easily verified that since y1 6= y2, one of the above expressions must hold with

strict inequality.13 So without loss of generality, suppose that

β11(y1)f(y1) > h1(y1)− h1(1) + α11(1)− α11(y1) + β11(1)f(1).

Then by the assumption that y = 1 maximizes utility for the type 2 consumer given

these cost shares,

β22(y1)f(y1) ≥ h2(y1)− h1(1) + α22(1)− α22(y1) + β22(1)f(1).

Summing the above two inequalities we find

(β11(y1) + β22(y1))f(y1) > h1(y1)− h1(1) + h2(y1)− h2(1)+

α11(1) + α22(1)− α11(y1)− α22(y2) + (β11(1) + β22(1))f(1) (∗)

Also by assumption, y = 1 maximizes profit for the core state jurisdiction s facing the

above cost shares. That is,

α11(1) + α22(1) + (β11(1) + β22(1))f(1)− f(1) ≥

α11(y1) + α22(y1) + (β11(y1) + β22(y1))f(y1)− f(y1)

or, rearranging,

(β11(y1) + β22(y1))f(y1) ≤α11(1) + α22(1)− α11(y1)− α22(y1)+

(β11(1) + β22(1))f(1) + f(y1)− f(1) (∗∗)

We can then infer from equations (∗) and (∗∗) that

f(y1)− f(1) > h1(y1)− h1(1) + h2(y1)− h2(1).

13 This is not true in general. It holds only as a result of the utility function and cost function chosen in
this example.
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Substituting in the actual functions, this inequality reduces to y1 > y1, clearly a con-

tradiction. Therefore, it must be the case that our chosen set Y q does cannot contain

two or more elements. However, since Y q was chosen arbitrarily, this implies that no

set in the partition contains more than one element. This is a contradiction to our

supposition that we could partition <+ into a finite number of sets by the cost shares

(α11(y, s), β11(y, s)) and (α22(y, s), β22(y, s)). Therefore, these cost share functions can-

not be finite.

Example 2: Nonanonymous finite cost shares which decentralize core allocations in

an economy satisfying SSGE and BAARS are not necessarily single-valued.

Consider a world with two crowding types and two taste types. Although generally

this would mean that there are four types of people in the world, here we consider a

differentiated crowding model in which the crowding types and the taste types are

perfectly correlated. That is, there are only two types of people in the world, people

with crowding type 1 and taste type 1, and people with crowding type 2 and taste

type 2. This means that crowding is differentiated. Suppose that crowding occurs in

consumption and the only two-person “mixed” jurisdictions get any utility from the

public good. The utility functions of the two types are as follows:

u1(x, y, n) =

{
x+ y2 + y for y ≤ 1 and if n11 = n22 = 1,
x+ 2 for y > 1 and if n11 = n22 = 1,
x otherwise

u2(x, y, n) =

{
x+ y(2− y) for y ≤ 1 and if n11 = n22 = 1,
x+ y for y > 1 and if n11 = n22 = 1,
x otherwise.

Let the endowments of each type be zero: ω1 = ω2 = 0. The total cost of producing

the public good in jurisdiction s is given by the function:

f(y,K(s)) = 2y.

Now suppose there are 10 agents of each type in the economy. One of the core states will

consists of ten two-person jurisdictions of the form (xi, xj , y, s
1, s2) = (−1,−1, 1, 1, 1).
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That is, each jurisdiction will contain one of each type of agent, and will produce one

unit of public good. In this core state, the utilities of the two types of agents will be

U1 = 1 and U2 = 0.

Notice that, since endowments are equal to zero, single-person jurisdictions get zero

utility. Also, coalitions containing more than two people or any type of “non-mixed”

coalition can get at most zero utility. Finally since the maximum total transferable

utility available to each “mixed” jurisdictions is one, such coalitions cannot improve

upon itself by producing any other level of public good. Therefore, the state described

above is a core state.

It is easily verified that the finite cost shares defined in the proof of Theorem 3

decentralize this core state. Those cost shares are given by the following functions:

α11(y, s) =

{
−1 for y ≤ 1

1 for y > 1
and β11(y, s) =

{
1 for y ≤ 1
0 for y > 1

α22(y, s) =

{
1 for y ≤ 1
0 for y > 1

and β22(y, s) =

{
0 for y ≤ 1
1/2 for y > 1

However, the purpose of this example is to demonstrate that it is impossible to decen-

tralize this core state using single-valued cost shares. Let us suppose that, for some core

state jurisdiction s, we can find decentralizing cost share functions (α11(y, s), β11(y, s))

and (α22(y, s), β22(y, s)) which do not vary with y.

Now consider the utility maximization problem for the type 2 agent in this juris-

diction. Utility maximization for the type 2 agent at y = 1 in s given α11 and β11

requires that14

h2(1)− α22 − β22f(1) ≥ h2(y)− α22 − β22f(y),

for all y. However, substituting in the utility and cost functions from above, this

expression can only be satisfied for all y < 1 if β22 ≤ 0 and can only be satisfied for all

y > 1 if β22 ≥ 1/2. Clearly, this means that any decentralizing cost shares cannot be

constant over all y.

14 Note here that we are suppressing the arguments of the cost-share functions.
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Our next result says that if utility and production functions are differentiable and

satisfy convexity, and the economy satisfies SSGE, then the core can be decentralized

by single-valued nonanonymous finite cost share prices.

Theorem 4. Let ht(y, n) be differentiable and concave in y for all t ∈ T and let

f(y, n) be differentiable and convex in y. If (X,Y, S) is a core state in an economy

satisfying SSGE, then there exists a finite cost share system σF such that (X,Y, S)

and σF constitute a finite cost share equilibrium, and each σFct(y, s) is independent of

y.

Proof/

See Appendix.

We are now prepared to state our main result. Wooders (1978) proved that in

an economy with strictly small effective groups and only one crowding type, if tech-

nology exhibits constant returns to scale, then core allocations can be anonymously

decentralized with Lindahl prices. The following theorem shows that it is possible to

decentralize core allocations with anonymous and finite prices without the restrictive

assumption of constant returns to scale. However, anonymous decentralization requires

a strengthening of our BAARS hypothesis.

The economy is said to have a Strongly Bounded Aggregate Arc-Rate of Substitution

(SBAARS) if for all s ∈ S,

|s|max
i∈s

sup
y′>ys

Mτ(i)(y
′, ys, s) ≤ 1 ≤ |s|min

i∈s
inf
y′<ys

Mτ(i)(y
′, ys, s).

Theorem 5. Let (X,Y, S) be a core state in an economy satisfying SSGE and SBAARS

and with only one crowding type. Then there exists a σF such that (X,Y, S) and σF

constitute an anonymous finite cost share equilibrium.

Proof/

See Appendix.

To see that Theorem 5 is a more general result than the existing anonymous

decentralization results, we now present two addition examples of economies (one with
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differentiated crowding and one with anonymous crowding) which satisfy SBAARS but

which do not have linear technologies.

Note that the economy presented in Example 2 satisfies SBAARS and agents have

convex preferences. But perhaps that example is less interesting with respect to how

the SBAARS condition relates to the extant literature because that economy also has

linear technology – the value of the SBAARS restriction is that it allows for anonymous

core decentralization without restriction to linear technologies. Therefore, we present

the following example of an economy satisfying SBAARS but without linear technology.

Example 3: An economy satisfying SSGE and SBAARS without linear technology.

Consider an economy consisting of exactly the same agents, population, and en-

dowments as in Example 2, but with technology as follows:

f(y,K(s)) =

{
2y for y ≤ 1,
1 + y2 for y > 1

.

Just as in Example 2, one of the core states will consists of ten two-person jurisdictions

of the form (xi, xj , y, s
1, s2) = (−1,−1, 1, 1, 1). That is, each jurisdiction will contain

one of each type of agent, and will produce one unit of public good. In this core state,

the utilities of the two types of agents will be zero. Showing this economy satisfies

SBAARS is a straightforward calculation following the procedure in Example 2.

Perhaps a more interesting example of an economy satisfying SBAARS without

linear technology is one which bears directly on Theorem 5, an economy with only one

crowding type in which core states can be decentralized with anonymous finite cost

shares but which cannot be decentralized with anonymous Lindahl prices. Example 4

presents such an economy.

Example 4: An economy satisfying SSGE and SBAARS with one crowding type and

without linear technology.

Consider a world consisting of an even number of identical individuals with the

following utility function:
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u(x, y, n) =

{
x+ y2 + y for y ≤ 1 and if |n| = 2,
x+ 2 for y > 1 and if n11 = n22 = 1,
x otherwise

.

Let the endowments of each person be zero and he total cost of producing the public

good in jurisdiction s is given by the function:

f(y,K(s)) =

{
2y for y ≤ 1,
1 + y2 for y > 1

.

Core states will consists of two-person jurisdictions of the form (x1, x2, y, s
1, s2) =

(−1,−1, 1, 1, 1). That is, each jurisdiction will contain two agents receiving -1 units

of private good, and will produce one unit of public good. In this core state, the

utility of each agent will be zero. Again, showing this economy satisfies SBAARS is a

straightforward calculation following the procedure in Example 2.

5. Conclusions

The point of this paper was to extend the domain of local public goods economies

for which it is possible to decentralize the core with a finite and anonymous price

system.15 Previously, it was only known that such decentralization was possible with

Lindahl prices when there was one crowding type and technology was linear. We define

a type of price system called finite cost shares. This includes Lindahl prices as a

special case but is a strict subset of all possible cost share price systems. We show that

if there is only one crowding type, preferences and production functions are monotonic,

and a bounding condition on normalized arc-rates of substitution called SBAARS is

satisfied, then anonymous finite cost shares decentralize the core. Thus, no convexity

15 We maintain the assumption of strict small group effectiveness for all of our discussion of local public
goods economies. This is because SSGE is precisely what implies that efficiency can only be achieved in
the economy when agents break up in a system of jurisdictions that are small compared the population.
Thus, SSGE is one way of defining exactly what a local public goods economy is.
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or differentiability of preferences or production functions is required. We also show

that with more than one crowding type, nonanonymous decentralization of the core is

possible and that SBAARS can be replaced by a weaker condition called BAARS.

The above equivalence results implies that the questions of existence of a finite

cost-share equilibrium and core existence are the same question. While it has long

been understood that the core is often empty in these local public goods economies –

see Pauly (1970) and Wooders (1978) for early discussions – the ε-core can be shown

to exist (see Wooders (1980) and the exact core exists in continuum versions (see Cole

and Prescott (1997), Conley and Wooders (1997b), and Ellickson, et al. (1999)).

Finally, the core is a cooperative notion and, as is the tradition in this literature,

our decentralization results show that this stable allocation can be supported by fulling

decentralizing prices. Although implementation is an interesting question, it is clearly

beyond the scope of this work.

Appendix

Theorem 1. If the state (X,Y, S) ∈ F and the finite cost share system σF constitute
a finite cost share equilibrium, then (X,Y, S) is in the core.

Proof/

Suppose that (X,Y, S) and σF constitute a finite cost share equilibrium but
(X,Y, S) is not in the core. Then there exists a jurisdiction, ŝ ∈ S, and an alloca-
tion, (x̂, ŷ), such that ∑

i∈ŝ

ωτ(i) −
∑
i∈ŝ

x̂i − f(ŷ,K(ŝ)) ≥ 0 (1.1)

and for all i ∈ ŝ where (X,Y, S) assigns i ∈ spi and allocation (xi, y
pi),

uτ(i)(x̂i, ŷ,K(ŝ)) > uτ(i)(xi, y
pi ,K(spi).

Expanding this and summing over all i ∈ ŝ gives∑
i∈ŝ

x̂i +
∑
i∈ŝ

hτ(i)(ŷ,K(ŝ)) >
∑
i∈ŝ

xi +
∑
i∈ŝ

hτ(i)(y
pi ,K(spi)). (1.2)
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Now if agent i ∈ ŝ were to pay the finite cost shares assigned by σF for jurisdictions spi

and ŝ, by definition the private goods consumption of agent i in these two jurisdictions
would be

xi ≡ ωτ(i) − ακ(i)τ(i)(y
pi , spi)− βκ(i)τ(i)(y

pi , spi)f(ypi ,K(spi))

and (1.3)

x̃i ≡ ωτ(i) − ακ(i)τ(i)(ŷ, ŝ)− βκ(i)τ(i)(ŷ, ŝ)f(ŷ, κ(ŝ)).

Note that x̃i is not necessarily the allocation assigned by the improving allocation x̂.
By utility maximization under σF we know that

ωτ(i) − ακ(i)τ(i)(y
pi , spi)− βκ(i)τ(i)(y

pi , spi)f(ypi ,K(spi)) + hτ(i)(y
pi ,K(spi)) ≥

ωτ(i) − ακ(i)τ(i)(ŷ, ŝ)− βκ(i)τ(i)(ŷ, ŝ)f(ŷ,K(ŝ)) + hτ(i)(ŷ,K(ŝ)). (1.4)

Substituting xi and x̃i from (1.3) into (1.4) and summing over all i ∈ ŝ gives∑
i∈ŝ

xi +
∑
i∈ŝ

hτ(i)(y
pi ,K(spi)) ≥

∑
i∈ŝ

x̃i +
∑
i∈ŝ

hτ(i)(ŷ,K(ŝ)).

This implies, directly from (1.2), that∑
i∈ŝ

x̂i +
∑
i∈ŝ

hτ(i)(ŷ,K(ŝ)) >
∑
i∈ŝ

x̃i +
∑
i∈ŝ

hτ(i)(ŷ,K(ŝ))

or ∑
i∈ŝ

x̂i >
∑
i∈ŝ

x̃i. (1.5)

However, by profit maximization under σF we know that∑
i∈ŝ

ωτ(i) −
∑
i∈ŝ

x̃i − f(ŷ,K(ŝ)) ≤ 0

or ∑
i∈ŝ

ωτ(i) − f(ŷ,K(ŝ)) ≤
∑
i∈ŝ

x̃i

which from (1.1) reduces to ∑
i∈ŝ

x̂i ≤
∑
i∈ŝ

x̃i,

a contradiction to (1.5).

Theorem 2. If the state (X,Y, S) ∈ F and σF constitute a finite cost share equilibrium
then (X,Y, S) is Pareto optimal.

Proof/
By Theorem (1), the set of finite cost share states are contained in the set of core

states. Since all core states are Pareto optimal, so are all finite cost share states.
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Theorem 3. Let (X,Y, S) be a core state in an economy satisfying SSGE and BAARS.
Then there exists a σF such that (X,Y, S) and σF constitute a nonanonymous finite
cost share equilibrium.

Proof/
Since the economy satisfies SSGE, by Lemma 1 all agents of the same taste and

crowding type are treated equally in any core state, irrespective of their assigned juris-
diction. Let Uct denote the utility level received in the core state by agents with type
(c, t). Then for all c ∈ C and all t ∈ T , denote the total willingness of an agent of type
(c, t) to pay to join a jurisdiction s ∈ Sct offering y ∈ <+ public goods as:

twpct(y, s) ≡ ωt + ht(y,K(s))− Uct, (3.1)

i.e., the total willingness to pay is the surplus utility received in s over the core state
utility.

Since (X,Y, S) is a core state, in each core state jurisdiction, s1, . . . , sP , the cor-
responding levels of public goods, y1, . . . , yP , must maximize total utility. That is,
yp ∈ Y (sp) for p = 1, . . . , P . In each alternative jurisdiction s ∈ S−S, let ys be a fixed
but arbitrary element of Y (s).

For each t ∈ T and for each s ∈ S, define the finite cost share ratios as follows:

βt(y, s) ≡


inf
y′<ys

Mt(y
′, ys, s), if y < ys;

sup
y′>ys

Mt(y
′, ys, s), if y ≥ ys.

(3.2)

As state above, since each Mt(y
′, ys, s) is bounded below and is bounded above

on y′ > ys, the function βt(y, s) is well-defined. However, generally Mt(y
′, ys, s) is

neither continuous nor monotonically decreasing and so, for a given s, the image βt(y, s)
generally contains two elements. Now for each c ∈ C, t ∈ T , and each s ∈ Sct, define
the finite cost share participation component as follows:

αct(y, s) ≡ twpct(ys, s)− βt(y, s)f(ys,K(s)). (3.3)

Note that for each s the image set of each αct(y, s) generally contains two elements
because each βt(y, s) does.

1. We begin by showing that when agents maximize utility given these finite cost
shares they can do no better than the jurisdictions to which they are assigned by
the core state partition. Given these cost shares, an agent i of type (c, t) consuming
y ∈ <+ public goods in any jurisdiction s ∈ Sct gets utility

ωt + ht(y,K(s))− αct(y, s)− βt(y, s)f(y,K(s)).

Substituting in αct(y, s) from (3-3-) and then twpct(y, s) from (3.1), the agent’s
utility is

ωt + ht(y,K(s))− [twpct(y
s, s)− βt(y, s)f(ys,K(s))]− βt(y, s)f(y,K(s))
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= Uct + ht(y,K(s))− ht(ys,K(s)) + βt(y, s)[f(ys,K(s))− f(y,K(s))].

Clearly, given the defined cost shares, agent i gets Uct by choosing ys public goods
in jurisdiction s. So it remains to show for all y ∈ <+ that

ht(y,K(s))− ht(ys,K(s)) + βt(y, s)[f(ys,K(s))− f(y,K(s))] ≤ 0. (3.4)

But by definition of βt(y, s), for all y < ys

βt(y, s) ≤
ht(y

s,K(s))− ht(y,K(s))

f(ys,K(s))− f(y,K(s))
(3.5)

and for all y > ys

βt(y, s) ≥
ht(y

s,K(s))− ht(y,K(s))

f(ys,K(s))− f(y,K(s))
. (3.6)

Therefore, for all y ∈ <+

βt(y, s)[f(ys,K(s))− f(y,K(s))] ≤ ht(ys,K(s))− ht(y,K(s)),

which is precisely equation (3.4). This shows that in all possible alternative juris-
dictions and all possible levels of public good, given this cost share system, agents
can do no better that their assigned core state jurisdictions and the optimal level
of public good for that jurisdiction.

2. Next we show that the jurisdictions in the core partition generate enough revenue
at the constructed cost shares to pay for the public good level they provide. Given
the constructed cost shares, total revenues in core state jurisdiction sp are∑

i∈sp

ακ(i)τ(i)(y
p, sp) +

∑
i∈sp

βτ(i)(y
p, sp)f(yp,K(sp)) (3.7)

Now substituting in each twpct(y
p, sp) from (3.1) into (3.7), revenues in sp reduce

to ∑
i∈sp

ωτ(i) +
∑
i∈sp

hτ(i)(y
p,K(sp))−

∑
i∈sp

Uκ(i)τ(i).

But since core state jurisdictions are feasible, we know that∑
i∈sp

ωτ(i) +
∑
i∈sp

hτ(i)(y
p,K(sp))−

∑
i∈sp

Uκ(i)τ(i) = f(yp,K(sp)).

Therefore, revenues exactly cover costs in core state jurisdictions under σF .

3. Now we show that no jurisdiction s can do any better than providing ys public
goods given the finite cost share system. Jurisdiction s maximizes profit producing
ys given σF if and only if for all y ∈ <+∑

i∈s

ακ(i)τ(i)(y
s, s) +

∑
i∈s

βτ(i)(y
s, s)f(ys,K(s))− f(ys,K(s)) ≥
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∑
i∈s

ακ(i)τ(i)(y, s) +
∑
i∈s

βτ(i)(y, s)f(y,K(s))− f(y,K(s)). (3.8)

By construction,

αct(y
s, s) ≡ twpct(ys, s)− βt(ys, s)f(ys,K(s)),

and
αct(y, s) ≡ twpct(ys, s)− βt(y, s)f(ys,K(s)),

Thus substituting in αct(y
s, s) and αct(y, s) into (3.8), and collecting like terms,

(3.8) becomes

[1−
∑
i∈s

βτ(i)(y, s)][f(ys,K(s))− f(y,K(s))] ≤ 0.

This implies that profits are maximized at ys if and only if∑
i∈s

βτ(i)(y, s) ≥ 1 for all y < ys (3.9)

and ∑
i∈s

βτ(i)(y, s) ≤ 1 for all y > ys. (3.10)

But by the construction of βt(y, s), and by BAARS, this condition is satisfied.
Therefore jurisdiction s maximizes profits at ys.

4. Finally, we show that no alternative jurisdiction can do better than core state juris-
dictions by showing that they cannot have positive profits. Recall that core state
jurisdictions exactly cover costs under these cost shares, and the above argument
shows that all jurisdictions maximize profit at ys. The total profit in jurisdiction
any s providing ys public goods is∑

i∈s

ακ(i)τ(i)(y
s, s) +

∑
i∈s

βκ(i)τ(i)(y
s, s)f(ys,K(s))− f(ys,K(s)). (3.11)

By construction (see equations (3.3) and (3.1)),

ακ(i)τ(i)(y
s, s) = ωτ(i) +hτ(i)(y

s,K(s))−Uκ(i)τ(i)−βτ(i)(y
s, s)f(ys,K(s)). (3.12)

Summing (3.12) over all agents gives∑
i∈s

ακ(i)τ(i)(y
s, s) =

∑
i∈s

ωτ(i) +
∑
i∈s

hτ(i)(y
s,K(s))−

∑
i∈s

Uκ(i)τ(i) −
∑
i∈s

βτ(i)(y
s, s)f(ys,K(s)).
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Thus profit in jurisdiction s, (3.11), reduces to∑
i∈s

ωτ(i) +
∑
i∈s

hτ(i)(y
s,K(s))− f(ys,K(s))−

∑
i∈s

Uκ(i)τ(i).

Suppose for some alternative jurisdiction s̄ ∈ S that profits were strictly positive.
But then ∑

i∈s̄

Uκ(i)τ(i) <
∑
i∈s̄

ωτ(i) +
∑
i∈s̄

hτ(i)(y
s̄,K(s̄))− f(ys̄,K(s̄)),

and the agents in s̄ could do better than they do in their assigned core state
jurisdiction by producing ys̄ and distributing the surplus private good. This con-
tradicts the hypothesis that (X,Y, S) is a core state. Thus no jurisdiction can
make positive profit under these prices.

Theorem 4. Let ht(y, n) be differentiable and concave in y for all t ∈ T and let
f(y, n) be differentiable and convex in y. If (X,Y, S) is a core state in an economy
satisfying SSGE, then there exists a finite cost share system σF such that (X,Y, S)
and σF constitute a finite cost share equilibrium, and each σFct(y, s) is independent of
y.

Proof/
We prove this result by showing that, under these hypotheses, BAARS is satisfied

and the finite cost shares constructed in Theorem (3) are independent of y.
To show that each βt(y, s) is single-valued for a given s, consider again the function

Mt(y
′, ys, s) ≡ ht(y

s,K(s))− ht(y′,K(s))

f(ys,K(s))− f(y′,K(s))
,

defined everywhere on <+ except ys. By l’Hôpital’s rule,

lim
y′→ys

Mt(y
′, ys, s) = lim

y′→ys

h′t(y
′,K(s))

f ′(y′,K(s))
=
h′t(y

s,K(s))

f ′(ys,K(s))
.

This means that the limits from the left of ys and from the right of ys are the same.
Thus to show that βt(y, y

s, s) is single-valued, it suffices to show that Mt(y
′, ys, s) is

decreasing on <+ (except ys) because that would imply that

inf
y′<ys

Mt(y
′, ys, s) = sup

y′>ys
Mt(y

′, ys, s). (4.1)

But Mt(y
′, ys, s) is differentiable everywhere on <+ except ys and it is easily verified

that M ′
t(y

′, ys, s) ≤ 0 at y′ if and only if

f ′(y′,K(s))[ht(y
s,K(s))− ht(y′,K(s))] ≤ h′t(y′,K(s))[f(ys,K(s))− f(y′,K(s))]. (4.2)
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However, convexity of f(y,K(s)) requires that

f ′(y′,K(s)) ≤ f(ys,K(s))− f(y′,K(s))

ys − y′
for all y′ < ys, (4.3)

and concavity of ht(y,K(s)) requires that

ht(y
s,K(s))− ht(y′,K(s))

ys − y′
≤ h′t(y′,K(s)) for all y′ < ys. (4.4)

Multiplying equations (4.3) and (4.4) gives, for all y′ < ys,

f ′(y′,K(s))
[ht(y

s,K(s))− ht(y′,K(s))]

ys − y′
≤ h′t(y

′,K(s))[f(ys,K(s))− f(y′,K(s))]

ys − y′
.

(4.5)
Then multiplying (4.5) by ys− y′ (which is positive, in this case) gives (4.2). Similarly,
convexity of f(y,K(s)) requires that

f ′(y′,K(s)) ≥ f(ys,K(s))− f(y′,K(s))

ys − y′
for all y′ > ys (4.6)

and concavity of ht(y,K(s)) implies that

ht(y
s,K(s))− ht(y′,K(s))

ys − y′
≥ h′t(y′,K(s)) for all y′ > ys. (4.7)

Multiplying (4.6) and (4.7) gives, for all y′ > ys,

f ′(y′,K(s))
[ht(y

s,K(s))− ht(y′,K(s))]

ys − y′
≥ h′t(y

′,K(s))[f(ys,K(s))− f(y′,K(s))]

ys − y′
.

(4.8)
And then multiplying (4.8) by ys − y′ (which is negative, in this case) gives (4.2).
Therefore, (4.2) is satisfied for all y′ 6= ys and hence M ′

t(y
′, ys, s) ≤ 0 for all y′ 6= ys.

As indicated above, this proves that βt(y, s) is independent of y for all t ∈ T . It follows
immediately that each αct(y, s) is also independent of y.

Theorem 5. Let (X,Y, S) be a core state in an economy satisfying SSGE and SBAARS
and with only one crowding type. Then there exists a σF such that (X,Y, S) and σF

constitute an anonymous finite cost share equilibrium.

Proof/
Since the economy has only one crowding type, we will drop all indexes referring

to an agent’s crowding characteristic. Also note that with only one crowding type, the
crowding profile of a jurisdiction depends only on the total number of agents in the
jurisdiction.
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By Lemma 1, identical agents are treated equally in the core. Let Ut denote the
core state utility of a type t ∈ T agent. Just as in the proof for Theorem 3, let ys

denote the core state public good levels for all s ∈ S and an arbitrary element of Y (s)
for all other jurisdictions. First, define finite cost share ratios as in Theorem 3:

βt(y, s) ≡


inf
y′<ys

Mτ(i)(y
′, ys, s), if y < ys;

sup
y′>ys

Mτ(i)(y
′, ys, s), if y ≥ ys.

As in Theorem (3), eachMt(y, y
s, s) is bounded in the appropriate ways to make βt(y, s)

a well-defined function. Next, define new a new finite cost share ratio which doesn’t
depend on type as follows:

β(y, s) ≡


min
i∈s

βt(y, s), if y < ys;

max
i∈s

βt(y, s), if y ≥ ys.

Finally, define each finite cost share participation component as follows:

αt(y, s) ≡ twpt(ys, s)− β(y, s)f(ys,K(s)).

Note that for all y < ys and for all t ∈ T ,

β(y, s) ≤ βt(y, s);

and for all y ≥ ys and for all t ∈ T ,

β(y, s) ≥ βt(y, s).

From here the arguments which show that (1) all agents maximize utility at ys

under these cost shares and can do no better than their assigned jurisdictions; (2)
production costs are exactly covered in core state jurisdictions; and (3) jurisdictions
maximize profit in any jurisdiction at ys and no alternative jurisdiction can do better
than the core state jurisdictions are formally identical to the same arguments in the
prove of Theorem 3. To see why the stronger restriction of SBAARS is needed, consider
that anonymous cost shares requires that each the β(y, s) need to be identical and yet
still satisfy equations (3.5) and (3.6). Hence β(y, s), the common and identical cost
sharing ratio, must be as small as the smallest βt(y, s) for all y < ys and as large as the
largest βt(y, s) for all y ≥ ys in order to satisfy utility-maximization for all consumers.
But then profit maximization given by equations (3.9) and (3.10) becomes

|s|min
i∈s

βτ(i)(y, s) ≥ 1 for ally < ys

and
|s|max

i∈s
βτ(i)(y, s) ≤ 1 for ally > ys.
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However, this is satisfied exactly by our stronger assumption, SBAARS.
What remains to be shown is that the cost share functions defined here satisfy

FAP. Clearly, β(y, s) is the same across all types within a jurisdiction. And by Lemma
(2), all implicit contributions to public goods are anonymous. Thus, in any core state
jurisdiction sp, for all i, î ∈ sp where τ(i) = t and τ (̂i) = t̂,

ωt − xi =αt(y
p, sp) + β(yp, sp)f(yp,K(sp)) =

αt̂(y
p, sp) + β(yp, sp)f(yp,K(sp)) = ωt̂ − xî.

We can therefore conclude that all agents in a core state jurisdiction pay identical par-
ticipation prices and cost share ratios in their assigned jurisdictions. We now show that
the cost share system satisfies FAP. That is, we show σFt (ys, s) = σFt (yŝ, ŝ) whenever
ys = yŝ and K(s) = K(ŝ).

Consider any two jurisdictions s, ŝ ∈ S satisfying K(s) = K(ŝ). Note that since
there is only one crowding type, this means we consider any two jurisdictions s, ŝ ∈ S
satisfying |s| = |ŝ|. Then, by construction, for any i ∈ I where τ(i) = t,

σFt (ys, s) = αt(y
s, s) + β(ys, s)f(ys,K(s))

= ωt + ht(y
s,K(s))− Ut

and
σFt (yŝ, ŝ) = αt(y

ŝ, ŝ) + β(yŝ, ŝ)f(yŝ,K(ŝ))

= ωt + ht(y
ŝ,K(ŝ))− Ut

Then since K(s) = K(ŝ), we know that ht(y
s,K(s)) = ht(y

ŝ,K(ŝ)) whenever ys = yŝ.
Therefore σFt (ys, s) = σFt (yŝ, s) whenever ys = yŝ. This and the above result that the
core state jurisdiction cost shares are anonymous prove that the cost share system is
fully anonymous.
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