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Abstract

We consider a situation in which games are formed endogenously in two
senses: (1) there is a pregame in which agents choose to learn a subset of all
feasible strategies and can then employ only these strategies in subsequent
play, and (2) agents choose their game partners through a costly search pro-
cess. We show that at any subgame perfect equilibrium, agents will constrain
their action sets in the pregame in such a way that a single social norm pre-
vails. Thus, all agents in a society will abide by the same ethical standard,
although what standard this will be cannot be predicted. We also show that
these are essentially the only SPE outcomes. We suggest that this provides at
least a partial explanation for experimental observations that agents appar-
ently choose strategies that do not maximize their payoffs.

Keywords: Behavioral economics, Endogenous games, Bilateral bargaining,
Prisoners’ dilemma, Social norms



1. Introduction

Experiments and everyday observations show that in many situations, people do

not seem to behave as classical game theory predicts. Many explanations have been

offered in the literature. If people are boundedly rational, for example, it may be

difficult for them to understand their best interests in complicated situations. While

certainly true in the abstract, this does not help us understand why agents continue

to follow apparently suboptimal strategies even in very simple strategic situations such

as ultimatum or prisoners’ dilemma games. Alternatively, it may be that agents are

basing their actions on rules of thumb, a concern for the welfare of others, or on a

prevailing social norm as behavioral economists suggest.

It would be foolish to deny these are important elements affecting human behavior.

For example, professionals, even professors, devote considerable time and energy to

meet self-imposed standards even when there is no expectation of reward. We do not

expect our doctor to lie to us about our condition in order to run up the bill despite our

inability to verify or even understand his diagnosis, for example. We count on his sense

of professionalism or ethics. Why don’t these agents follow their apparent self-interest?

Whatever the reasons, the standard game theoretic approach clearly misses something

in its description of human behavior.

In the real world, individuals can often choose the agents with whom they interact.

For example, people choose their friends, spouses, business partners, and coauthors.

Moreover, these choices are often informed by observable features of the members of

the pool of potential partners. Sometimes these decisions are based solely on what one

might view as utility-maximizing considerations, such as when an individual chooses

a spouse based on attributes he or she would like to “consume,” or when a researcher

chooses a coauthor based on knowledge complementarities. Other times, however,

these decisions are based on “strategic” considerations in the sense that pairing with

one partner may entail playing a game in a more favorable way than pairing with

another. For example, when choosing a coauthor, a researcher might prefer someone

with a strong sense of personal responsibility. Such a partner, in effect, does not know
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how to free-ride and thus cannot play this strategy even though it is, in principle, a

feasible choice.

The key idea is that when individuals can accept or reject matches, agents will

find it in their interests to make themselves attractive partners. Thus, when partner-

ship decisions are based on strategic considerations, agents should take steps to make

themselves someone that others would like to play a game against.

To make this more concrete, consider the marriage market as an example. As

we say above, marriage is a partnership which is entered into voluntarily. As in the

Rubinstein and Wolinsky (1985) model, people meet many potential partners and incur

search costs if they reject a match and seek an alternative partnership. While many

marriages dissolve when one or the other partner feels that the relationship is no longer

in their interests, we also have many examples of apparently selfless behavior. Spouses

stick by one another even when one is injured, loses a job, becomes addicted to a

substance, etc. Similarly, committed partners maintain fidelity even when there is little

chance of a dalliance being discovered. Of course, the most immediate explanation for

this is that these are ethical or moral choices. The question is: how can we understand

this within the framework of rationally maximizing agents?

In searching for marriage partners, one of the things we try to find out about is

the “character” of our potential mate: will this person be loyal, will he or she stick by

us in difficult times, etc. Promises are not good enough since they are not subgame

perfect. Reputation is of limited value as this game is not very frequently repeated.

Partners therefore go to significant effort to signal they have credibly constrained their

action sets to preclude these types of behavior. This might be through the vehicle of

claiming affiliation with a particular religion, showing that one was raised by a family

that disapproves of such behavior, demonstrating selfless loyalty to one’s friends or

community in some way, or even by showing a lack of social facility to play the field.

In short, the notion we explore here is that certain actions are not available to you

because your ethics forbid it (religious prohibitions against divorce) or you have never

learned them (I simply have no idea how to attract the opposite sex).
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In the context of this example, it is clear why agents would choose to constrain

their strategy sets before seeking a mate. If a man, for example, wants to match high

in the marriage market, he has to offer something of value in return. He should take

great pains to signal that he is not the kind of guy who will cheat, seek a trophy wife

in 10 years, or fail to work hard to provide for the children. By so doing, he can attract

a wife with similar ideas who will continue to contribute to the marriage even if he

loses his job, his rippling six-pack abs, or his health. As marriage is a positive sum

game, they can divide a larger surplus by choosing to forgo the possibility of pursuing

strategies that might be in their interests in some subgames.

The purpose of this paper is to explore more formally the idea of selecting partners

for strategic reasons and the implications this has for the structure of the games that

people play. To do this, we construct what we call an endogenous game. An endogenous

game begins with a symmetric stage game, in our case a prisoner’s dilemma, and a

population of identical players. In the first period of the game, which we call a pregame,

each player commits to a subset of the action space of the base game, and we call this

chosen subset a player’s list. In subsequent periods players are randomly matched,

observe their matched opponents’ lists, and then decide whether to play against that

opponent or pay a waiting cost and get rematched next period.1 When a pair decides

to play, they each choose single actions from their lists, collect their payoffs, and leave

the game. While the continuation game (after the pregame) is similar in spirit to

the Rubinstein and Wolinsky (1985) two-sided bargaining model, the addition of the

pregame makes the endogenous game considered here distinctive.

The game structure we explore is “endogenous” in two senses. Recall a standard

game is defined by three elements: a set of players, an action set for each player, and a

payoff function for each player. These are all taken as exogenous. In particular, agents

1 Dekel, Ely, and Yilankaya (2007) examine an evolutionary model in which agents with potentially
different preferences are matched. When preferences are fully observable agents know their matched
partners preferences, and when preferences are unobservable agents only know the population distri-
bution of preferences. Our paper has a different information structure, with agents observing their
matched partners’ lists but not the population distribution of lists. Rather, agents infer the population
distribution of lists from the equilibrium strategies.
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are dropped into the game and must choose an action from the specified action set. In

endogenous games, the player set arises though strategic choices of agents. No agent

is forced to enter a stage game. In addition, the action set is chosen by agents in the

pregame, and so this is endogenous as well. Thus, two out of three of the basic elements

of a game arise endogenously in our setup.2

We begin by considering a prisoners’ dilemma game. We show that if we restrict

attention to pure strategies, only two robust outcomes are possible: all agents learn to

cooperate (only) or all agents learn either only to defect or both to cooperate and defect

but end up always choosing to defect.3 If we modify this game to allow a finite set of

partially cooperative behaviors then only two classes of outcomes are possible. When

the set of partially cooperative strategies is coarse enough relative to the cost of search,

then any outcome in which all agents learn the same, unique strategy is an equilibrium.

More interestingly, these social norm outcomes are the only equilibria. It is not possible

for agents to choose different lists or play different strategies in equilibrium. However,

if the set of strategic alternatives becomes fine enough, then the game unravels in the

sense that the only equilibrium is for all agents to learn and play the noncooperative

strategy.

We also consider an “anti-prisoner’s dilemma” in which “cooperation” is a dom-

inant and Pareto optimal strategy. We now find that social norms that are strictly

worse than the dominant strategy outcome for all agents can be supported as equi-

libria. Thus, when games are endogenous, we may see harmful social norms emerge.

What drives agents to participate in this apparently self-defeating behavior is that no

one will interact with an agent who fails to follow the prevailing social norm. In a sense,

peer pressure supports undesirable social outcomes. The anti-prisoner’s dilemma is also

useful in making two other points about endogenous games clear. First, the pregame

2 Dekel, Ely, and Yilankaya (2007) explore implications of relaxing the third assumption, fixed payoff
functions, using an evolutionary framework.

3 We will ignore for now an additional type of equilibrium that would not survive farsighted behavior by
agents.
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does not in any sense facilitate beneficial cooperation (as would a system of ex ante

binding contracts, for example). Rather, the endogenous game structure is a neutral

device that turns out to drive populations of agents to adopt a single social norm of

behavior which may be better or worse for agents than the payoffs they would receive

in the associated one-shot game. Second, endogenous games do not give a folk theorem

like we see in repeated games. In particular, only symmetric outcomes are possible,

and more importantly, equilibrium outcomes can be dominated by the minmax payoff.

The addition of a pregame allows for two new interpretations of how social norms

arise. First, in our model, defections from the social norm result from agents adopting

lists with strategies that are worse for the group than the social norm strategies. Agents

then punish these defectors by refusing to play against them. In essence, defections from

the social norm, if not advantageous to the group, result in ostracism of the defector.4

This form of punishment contrasts with what we see in the repeated games literature

where punishment takes place after a defection in the stage game, as in Coleman (1990),

Kandori (1992), Ellison (1994), Neilson (1999), and Dal Bo (2007).5

A second interpretation arises from thinking about the choice of a list, and therefore

the adoption of a social norm, as an investment in social capital. Because the investment

comes at the beginning of the game, it is subject to holdup problems (e.g. Peters and

Siow, 2002, and Cole, Mailath, and Postlewaite, 2001). These holdup problems are

mitigated by the ability to refuse to play against someone who underinvests in social

capital. Similar phenomena arise in Burdett and Coles (2001) and Baker and Jacobsen

(2007).6 Burdett and Coles consider a marriage market in which singles invest in order

to make themselves more attractive, and find that bad social norm equilibria arise in

4 Hirshleifer and Rasmusen (1989) analyze a different model of ostracism in which current defections
from the group-cooperative strategy are punished by future ostracism from the group.

5 Also see Axelrod (1986) who shows that social norms, such as cooperation in the prisoners dilemma,
can arise out of evolutionary processes. Extensions of Axelrod‘s work include Bendor and Swistak
(2001) and Sugden (2004).

6 Jansen (2004) explores similar phenomena in a job-matching setting. An overview of the search-
matching literature can be found in Rogerson, Shimer, and Wright (2005).
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which singles overinvest in attractiveness. Baker and Jacobsen examine a marriage

matching problem that incorporates two elements, a holdup problem arising because

of human capital investment coming before the marriage, and a cooperation problem

caused by the joint valuation of human capital. They illustrate how custom can help

mitigate the holdup problem.7

The paper proceeds as follows. In section 2 we describe the model. In sections 3

and 4 we give our results for the prisoner’s dilemma and the anti-prisoner’s dilemma,

respectively. In section 5 we discuss the existing literature as it relates to these results

in more detail. We make a few remarks about our modeling approach in section 6, and

section 7 concludes.

2. The Model

Consider an economy with I agents indexed i ∈ {1, . . . , I} ≡ I. Each agent has a

finite set of strategies X available for him to learn. Agents receive payoffs by finding

a partner with whom to play a bilateral game. The payoff to each agent is given by

the function F : X × X → <. Thus, the payoff to agent i choosing strategy xi playing

agent j choosing strategy xj is F (xi, xj).

We assume a two-part game. The first part we will call the pregame. Here, each

agent chooses a subset of strategies to learn `i ⊆ X . We will refer to `i as agent i’s list.

Chosen lists are private information during the pregame, but are revealed on a player-

by-player basis later in the game as described below. Denote the set of all possible lists

as L (that is, all possible nonempty subsets of X ).

The second part of the game is a multistage matching game similar to the one

described by Rubinstein and Wolinsky (1985). In each round of the stage game, agents

7 As with much of the search-matching literature, both of these papers analyze steady states. Conse-
quently, we contribute to the search-matching literature on hold-up problems by allowing for strategic
equilibria rather than steady-state equilibria.
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are randomly matched with another agent, and each agent observes his partner’s list.

They then can choose one of two options: play or not play.

If at least one agent decides to Not play (N), they receive no payoff but pay a delay

cost of z > 0 and search for a new partner in the next round of play. If both agents

decide to Play (P), they choose strategies from their list, settle on a Nash equilibrium

and retire from the game. Thus, the stage game really has two substages, one in which

the agents decide to play or not, and the second substage where they decide on what

strategy to employ if they do decide to play together. We will carry these stages in

the proofs of our results, but in the interest of simplicity, will not create notation to

describe this explicitly. Thus, choosing a strategy x implies that one chose P in first

substage, and choosing a strategy N implies that one would play the dominant strategy

in the second substage if it were reached.8

We will also assume that when an agent retires, he is replaced by an agent with the

same name who has chosen to play in the same way. While this is a strong assumption

from a theoretical standpoint, it will become clear that in the applications we consider,

it has very little bite.

Formally, an agent’s strategy in the second part of the game is a mapping from

the strategy list of the agent with whom he is matched to his own list plus N. Since

matching is random and anonymous and the population of agent types is stable across

periods, we assume that history does not influence strategic choice. Let agent i’s second

stage strategy be denoted gi : L → `i
⋃
N . Let G denote the set of all such mappings.

We will refer to gi as agent i’s stage game strategy.

An agent’s strategy therefore consists of a pair (`i, gi) ∈ (L,G). Collectively, we

will denote this as si ∈ S. A strategy profile for the game is denoted: S ≡ (s1, . . . , sI) ∈

S × . . . × S. It will be useful to refer to the profile of lists and stage game strategies

separately on occasion. We denote these L = (`1, . . . , `I) and G = (g1, . . . , gI). We will

also use the notation s−i to denote the strategy profile for all agents excluding agent

8 We thank an anonymous referee for suggesting this.
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i. Finally, let L̄ denote all the possible lists that are not chosen by any agent given the

strategy profile S. Thus, no list ¯̀∈ L̄ should ever be seen by any agent in any stage

game on the equilibrium path.

We will use the standard notion of Subgame Perfect Equilibrium (SPE) in paper.

In the next two sections, we will maintain the two assumptions that population

size, I, is even and I ≥ 4. The first is because this is a matching game, and if the

population were odd, we would have to include the possibility of not finding a potential

match in any given period. This would needlessly complicate our model. The second

is because if I = 2 agents would always be matched with the same player each period

which would make the endogeneity of the game degenerate.

3. Endogenous Play in a Granular Prisoners’ Dilemma Game

Prisoners’ Dilemma
Cooperate Defect

Cooperate 10, 10 -3, 12
Defect 12, -3 0, 0

In this section, we begin by defining a standard symmetric prisoners’ dilemma

game. The strategy set for each agent is {c, d} with the payoffs given by:

F pd(c, c) = 10, F pd(d, c) = 12, F pd(c, d) = −3, F pd(d, d) = 0.

Note that the marriage game discussed in the introduction can be mapped onto

this. Cooperating in this context means making contributions to the household (wash-

ing dishes, cooking dinner) that provide public benefits to both agents. Defecting

means free riding on the contributions (if any) of one’s spouse.

Rational players, of course, will never contribute to a marriage in one shot play.

The main point of this section is to show that when games are formed endogenously,

8



making contributions to the collective becomes rational. In addition, we show that the

equilibrium contribution levels will be equal for both agents. Thus, endogenous games

enforce the emergence of various different social norms of symmetric and reciprocal

behavior. This contrasts with repeated versions of this game in which a folk theorem

holds and asymmetric contributions might be seen in equilibrium.

We will restrict attention to pure strategy equilibria; however, we wish to allow

agents richer strategy sets than simply cooperation and defection. We will therefore

modify the PD game above to allow agents to choose from a finite set of evenly spaced

partially cooperative strategies. There are a number of ways to do this, but the most

direct is to imagine pure strategies that have payoffs equivalent to mixed PD strategies.

Formally:

X = {0, ε, 2ε, . . . , (n− 1)ε, 1}

where ε = 1/n. The payoffs are:

F (xi, xj) =

xixjF
pd(c, c) + xi(1− xj)F pd(c, d) + (1− xi)xjF pd(d, c) + (1− xi)(1− xj)F pd(d, d).

Note that we interpret these as partially cooperative pure strategies and just con-

struct a game whose payoffs happen to correspond to those of a mixed strategy prison-

ers’ dilemma. Since we don’t literally contemplate mixed strategies, in practice these

partially cooperative strategies might mean “learn how to wash dishes, but not how to

do laundry” or “have a religious belief in the tithe but doubts about the immorality of

birth control.” Such agents would only be able to make bounded contributions to the

collectives they joined. In any event, this is not material to the results. All we need is

that there be a granularity in the strategy choices of the agents. We discuss below the

outcome when agents have a continuum of strategies (either pure or mixed).

Of course, the analysis we carry out below applies immediately to a more general

class of games than the granular prisoner’s dilemma. Specifically, let the strategy
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set for each agent be X = 0, ..., k, and the payoff function satisfies F (i, j) > F (i′, j)

for all i′ > i, and F (i, j) > F (i, j′) for all j′ < j. The first condition implies that an

agent’s strategies are ordered by dominance, with action 0 being the dominant strategy

and action i dominating action i′ whenever i′ > i. The second condition states that

switching from one strategy to a dominating one hurts a player’s partner. This makes

higher-numbered strategies more cooperative (or more generous) because they generate

higher payoffs for the partner. A generalized form of the granular prisoner’s dilemma

results when F (i, i) > F (i′, i′) whenever i′ < i. We will continue to state our results

using the granular PD game above, however, since it is widely studied and makes the

economic and behavioral implications of our results easy to talk about and interpret.

We also note that it is this dominance solvability that allows us to use the standard

notion of SPE. Without this, we would have to worry about agents’ beliefs about how

agents would play in the stage games, and how this in turn would affect the lists that

were optimal to choose in the pregame. We are indebted to an anonymous referee

for pointing out both of these observations, the latter of which allowed us to greatly

simplify the paper.

Theorem 1. If z is sufficiently small, then for any x̂ ∈ X there exists a SPE in which

`i = {x̂} for all agents i ∈ I

Proof/

We show this by backwards induction. Suppose two agents with these lists were

matched. If they agree to play, then they each have only one possible strategy to play

and so they get a payoff of f(x̂, x̂). Given that this is the best they could do in any

rematching as well, it is a best response to agree to play rather than wait to play with

another agent in a future round and pay a delay cost. Thus all agents will agree to

play when matched. Finally, we must show that no agent could do better by choosing

a different list in the pregame.

We consider three cases. Suppose first that an agent deviated by choosing a list

`i such that min `i = x̄ < x̂ (that is, with a least cooperative element involving less

cooperation that x̂). Since in any stage game, the only best response is for an agent to
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play his least cooperative strategy, and all other agents are identical and can only play

x̂ in any stage game, agent i’s best response is to agree to play whenever matched and

play x̄. However, if the cost of delay z is small, all other agents would be better off

declining to play when matched with i, which would lead to payoff F (x̂, x̄) < F (x̂, x̂), in

favor of waiting for a more cooperative player and receiving F (x̂, x̂) in a future round.

Thus, agent i will never find a match and will pay the delay cost z each round as a result

of this deviation. Clearly then, this is not a best response. Next suppose that an agent

deviated by choosing a list `i such that min `i = x̄ > x̂. It is immediate that agent i

will find a successful match the first round, and will get a payoff of F (x̄, x̂) < F (x̂, x̂),

since he is more cooperative than all the other agents. But he could have gotten payoff

F (x̂, x̂) by not deviating, so being more cooperative just gives up payoff and so is not

a best response. Finally, suppose that an agent deviated by choosing a list `i such that

min `i = x̂. Clearly, he would play x̂ in any stage game and so will match in the first

round and get a payoff of F (x̂, x̂). Since this is the same as he gets by not deviating,

this deviation does not improve his welfare.

We conclude that no deviation is a better response, and so the strategy profile

given in the hypothesis is an SPE.

What this says is that when search is relatively cheap (so agents can easily reject

undesirable partners) all agents learning a list consisting of the same unique action is

an SPE. We think of this as a social norm since all agents choose to do exactly the

same thing and are capable of doing nothing else in equilibrium.

Next we show that other, more complicated lists which lead to the same outcome

given above may also be seen in an SPE. Specifically, in equilibrium agents may learn

many stage game actions, as long as they have the same lowest (least cooperative)

element. This lowest element will then be the only action played in the stage game and

so will constitute the social norm.

Corollary 1.1 If z is sufficiently small, then for any x̂ ∈ X there exists an SPE in
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which min `i = x̂ for all i ∈ I, and x̂ is played by all agents in equilibrium in the stage

game.

Proof/

Suppose two agents with these lists were matched. If they agree to play, then in

an SPE they will always play the least cooperative strategy on their list since this is

the only Nash equilibrium in the subgame. Given that this is the best they could do

with any rematching, it is a best response to agree to play rather than to wait to play

with another agent in a future round and pay a delay cost. Given this, the addition

of other more cooperative strategies to an agent’s list is irrelevant in equilibrium. The

remaining details of why no deviation from this improves the welfare of any agent

follows the same intuition given in the proof of Theorem 1.

The next result states that the noncooperative outcome is always an equilibrium

regardless of the delay cost z.

Theorem 2. There exists an SPE in which `i = {0} for all i ∈ I, and 0 is played by

all agents in equilibrium in the stage game.

Proof/

Consider a strategy profile in which all agents learn only strategy 0. As above, it

is a best response to play this in any stage game and since this is true for all agents,

it is a best response for the agent to play with any agent which whom he is matched.

Thus, the best any agent can do is take the payoff F (0, 0) in the first round. Omitting

strategy 0 from your list just gives away payoff (since now you cooperate more than

other agents), and adding other more cooperative strategies to your list is irrelevant

since they will never be played in equilibrium when 0 is available. It follows that this

is an SPE.

That social norms are equilibria is perhaps not hugely surprising. The more inter-
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esting and difficult part of this work is to show that these are the only equilibria. This

contrasts with the Folk Theorem for repeated games.

We begin by focusing on a few particular types of strategies and then show that

these are the only strategies that will be played in equilibrium. Specifically, we will

categorize a player’s strategies as having two identifying characteristics: the least coop-

erative strategy in their own list (xm = min{`i} where the superscript m is mnemonic

for “my strategy”) and the least cooperative strategy that they will agree to play

against (xy where the superscript y is a mnemonic for “your strategy”). More formally,

define the set of players using such strategies for any given profile S as follows:

Ixm,xy (S) ≡ {i ∈ I | xm = min{`i} and

∀ ` ∈ L, if min{`} ≥ xy, gi(`) = xm, and if min{`} < xy, gi(`) = N}

In reading this definition, note that we embed the assumption that if a player i is

willing to play against a list ` with least element xy, then i is also willing to play against

any list with a larger least element. This is immediate since if it is a best response

to play with a less cooperative player it is also a best response to offer to play with a

more cooperative player. In addition, we assume that players always employ the least

cooperative strategy in their own lists when they agree to play with any opponent.

Again, it is immediate that this is the only subgame perfect best response. Thus, if a

strategy is part of an SPE, it must fall into some category

Ixm,xy (S).

We can therefore restrict our attention to such strategies from this point forward.

Now that we know the form that equilibrium strategies must take, it is useful

to form three exhaustive subcategories. It is possible that agents insist that their

opponents behave in a more cooperative way than they are willing to themselves. We

will call these exploitative agents wolves. On the other hand, it may be that agents

are willing to accept a match with an opponent who is less cooperative than they

are, perhaps in order to avoid the cost of continued searching. We call these more
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exploitable agents sheep. Finally, agents may be willing to play only with agents who

are at least as cooperative as they are willing to be. We call agents who insist on being

treated at least symmetrically norm players. We will add a superscript to the partition

we defined above to keep track of this:

Ixm,xy (S) ⊂ Iw(S) if and only if xm < xy

Ixm,xy (S) ⊂ Is(S) if and only if xm > xy

Ixm,xy (S) ⊂ In(S) if and only if xm = xy

We will call wolves and sheep complementary players if the wolves choose to be-

have in the least cooperative way the sheep will accept, and the sheep behave in the

least cooperative way the wolves will accept. More precisely, consider Ixmw,xyw(S) ⊂

Iw(S) and Ixms,xys(S) ⊂ Is(S). Then these agents are said to have complementary

strategies if and only if xmw = xys and xms = xyw.

Note that the equilibria shown to exist in Theorems 1 and 2 involve all agents in

the game playing the same strategies. Although it might be that agents use slightly

different strategies to support this outcome (for example, learning different lists, but

with the same least element) at any SPE, the outcome is that all agents abide by the

social norm.

It turns out there is one other type of equilibrium which also has the flavor of a

social norm. It is possible for all the agents but one to choose to be wolves, and for

the one remaining agent to be the complementary type of sheep when search costs are

small. Being a wolf is almost a social norm in this case. This equilibrium is not robust

to additional refinement and to this extent is an artifact of the equilibrium concept (in

contrast to the more realistic social norm SPE discussed above). While the one sheep

in this equilibrium cannot improve his payoff by defecting from this strategy in a static

sense, any reasonable sheep would see that if he chooses to become a norm player, for

example, the wolves would have no choice but to follow his example. We don’t consider

this kind of far-sighted behavior in this paper, however, and so the equilibrium remains.
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Theorem 3. For small enough z, there exists an SPE in which there is exactly one

sheep, and all other agents are complementary wolves.

Proof/

With so many wolves hoping to find the one sheep, wolves must search many

periods before finding a match. Sheep find a match right away, of course. As z becomes

small, however, the net search costs paid by wolves goes to zero, and the expected payoff

converges to the stage game payoff. Given this, no wolf would be better off becoming

a sheep since this results in a lower payoff. Also, adopting any other strategy that

results in the sheep agreeing to play when matched only gives up payoff since the

complementary wolf strategy results in the largest possible payoff in this case. The

only alternative strategies that would result in a wolf agent being able to play when

matched are to choose to instead to become a sheep even more submissive than the

one that already exists. Clearly, this will not increase his payoff. Thus, it is a best

response for a wolf to remain a wolf.

Why doesn’t the sheep choose a different strategy? Clearly he won’t choose to be a

more submissive sheep as this only lowers his payoff. Choosing to be a more aggressive

sheep, a norm player or a wolf, however means that neither he nor any other player

ever finds a successful match since all the other players match only with complementary

sheep or sheep that are even more submissive. Thus, defecting from the original sheep

strategy results in a payoff of −z in each period. Clearly this is worse than accepting

whatever payoff he gets from being the one lone sheep.

At last we are ready to show that the only SPE are those discussed in the propo-

sitions above. This is done through a series of lemmas given in the appendix that lead

up to the following theorem.

Theorem 4. For z small enough, only two types of SPE are possible: (1) all agents

using the same norm strategy (2) one sheep player and all other agents using the

complementary wolf strategy.
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Proof/

See appendix.

Note that if we set ε = 1, we get back the standard pure strategy prisoners’

dilemma game as a special case. The theorems then say that all agents choosing to

learn c only and all agents choosing to learn d only (or equivalently, c and d then

playing d) are the only two robust SPE.

Another immediate corollary is the following:

Corollary 4.1 For any given z if ε, the gap between pure strategies, is small enough,

then the only equilibrium outcome is for all agents to learn to defect (x = 0) and to

play this in every encounter.

Proof/

By Theorem 2, the noncooperative outcome is always a SPE. Thus, we need only

show this is the only SPE for small ε. Suppose that an agent i had a strategy g that

required that his opponent j employ strategy x > 0 and threatened to pass otherwise.

Suppose that the opponent j’s least cooperative strategy was x− ε. Since for small ε,

cost of delay z exceeds the small (ε) loss from playing with a slightly less cooperative

opponent this period, it is not credible (under the definition of SPE) for agent i to

decline to play with such an agent j. It follows that no such such strategy (requiring that

an opponent j employ any specific strategy x > 0 and threatening to pass otherwise)

could be subgame perfect. The only remaining strategy is to learn to never cooperate

(x = 0) and play this against all partners in all rounds.

Intuitively, this says the following: suppose that we begin at any partially cooper-

ative social norm SPE. Clearly, any one agent would improve his payoff by being just

a little bit less cooperative. Provided he does not take away more from his potential

partner than the search costs, he will still find a match in the first round. But then
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all agents are better served by learning a slightly less cooperative strategy and this

is the social norm. Of course, then it is optimal for any given agent to be slightly

less cooperative than this new social norm. This process unravels until only the fully

noncooperative social norm remains. An immediate implication of this is that if the

strategy set is continuous (or if mixed strategies are allowed), the game unravels and

only the noncooperative strategy remains as an equilibrium

This suggests that for any kind of cooperation to be possible, there must be clear

lines between ethical systems. To be seen in equilibrium, a philosophy or creed must lay

out a clear code of behavior and must be measurably distinct from alternative ethical

codes.

The assumption of evenly spaced granularity between strategies could also be re-

laxed. Suppose that there is an asymmetry in the gap between ethical systems. For

example, once one falls into an ethical muddle of cheating with any frequency, it might

be hard to think of any ethical system that would permit cheating only to one partic-

ular degree. On the other hand, one can imagine a system that says never cheat. If

this is the case, then once you fall below a certain ethical standard of behavior, there is

not sufficient granularity to prevent you from falling to the bottom of the ethical scale.

More formally, given search costs z, if the gap between strategies becomes smaller as

one moves toward pure noncooperation then the set of potential SPE equilibria will

include all symmetric outcomes above some cut point at which the granularity become

too fine (and as always, the noncooperative outcome as well).

4. The Anti-Prisoner’s Dilemma and Harmful Social Norms

Anti-Prisoner’s Dilemma
Behave Misbehave

Behave 10, 10 12, 0
Misbehave 0, 12 2, 2
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While much has been written (including this paper) about the prisoner’s dilemma,

little attention has been devoted to games like the anti-prisoner’s dilemma depicted

above. It is easy to see why. The game has a dominant strategy equilibrium which is

Pareto efficient. Equilibrium play in both the one-shot and repeated game case will

result in a Pareto efficient outcome. Thus, the game appears trivial, and in particular

to present the players no dilemma at all. We will see below, however, that this game

yields very different results when placed in an exogenous game structure.

To give this example more context, suppose that high school kids form groups of

two (best friends) to do things together. They can choose to be be good kids, work

hard at school, and generally behave, or skip classes, get in trouble and generally

be delinquent. The payoff from behaving is being allowed privileges such as a car,

late curfew, and praise from one’s parents. Misbehaving results in these privileges

being taken away, encounters with the police and disapproval from one’s parents. In

our example, the rewards from behaving exceed whatever pleasures there are from

misbehaving. Parents, however, tend to judge their children by comparing them to their

peers. Thus, if a child is misbehaving much more than his best friend, punishments

and disapproval are more severe. Conversely, if a child behaves well compared to his

friends, he looks especially good and gets exceptional rewards. From the prospective

of the kids, behaving is a dominant strategy. The best possible outcome, however, is

to be a very well behaved kid with an extremely delinquent friend. This maximizes the

good kid’s payoff (and in turn, minimizes that of the bad kid).

Considered as a one-shot game both kids behaving is the dominant strategy equilib-

rium. However, if the game is played endogenously (and the waiting cost is sufficiently

small) there exists a subgame perfect equilibrium in which everyone misbehaves. To

see this, suppose that all kids know only how to ”misbehave”. If such kids choose the

play with a kid who knows how to behave, they end up looking rotten and getting the

worst payoff possible. “Bad kids” are better off waiting for another bad kid to come

along. As a result, no kid would ever want to find a friend who has learned how to

behave in the pregame and so kids know that if they choose to be ”good” they will be
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ostracized. Thus, the endogenous game leads to a social norm in which all kids know

only how to misbehave and so everyone obtains a payoff below the minmax payoff of

10.9

The endogenous anti-prisoner’s dilemma captures a particularly harsh form of peer

pressure. No one likes misbehaving in our example. Nevertheless, everyone does so in

order to “fit in.” Thus, we can see how social norms enforced through ostracism can

be harmful to all.

We conclude this section with one final point. It may seem from the above examples

that any symmetric outcome of a symmetric game can be supported as the subgame

perfect equilibrium of an endogenous game. This is not the case, as can be seen in the

following game:

Game with a Unique Equilibrium
A B

A 10, 10 3, 4
B 4, 3 2, 2

In this game there is no equilibrium in which agents have only B in their lists,

no matter how small waiting costs are. To see why, suppose that everyone has only

B in their lists, and that agent i deviates during the pregame and chooses the list A.

When agent i is matched with agent j, agent j must opt to play against agent i because

agent j earns 3 from playing against i but earns 2 from playing against anyone else.

Consequently, this endogenous game has a unique class of subgame perfect equilibria

in which every list contains action the dominant action A, and the only equilibrium

payoff is the minmax payoff of 10.

9 Of course if we allowed kids differing degrees of possible misbehavior (that is, granular strategies) all
symmetric social norms of partial misbehavior would also be equilibria. It is also the case that these
are the only SPE, just as in the standard prisoner’s dilemma.
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5. Literature review

The starting point for this work is Rubinstein and Wolinsky’s (1985) famous bar-

gaining model. This began a large literature too extensive to be cited in detail here.10

Their paper provided a very useful formalization of the notion that the players in a

game are not randomly determined, but coalesce endogenously instead.

Although Rubinstein and Wolinsky do not further consider that the form of the

game that agents play may also be endogenously determined, there are a number of

other papers that do so in various ways.11 An excellent recent example is Jackson and

Wilkie (2005). The games they consider are endogenous in the sense that agents are

able to enter into certain classes of binding contracts to give one another side payments

contingent on the strategies they eventually choose. This is an example of precommit-

ment being introduced into the game and is in the spirit of Coasian contracting. It

has the effect of altering the payoff function for the agents, but not the strategy sets

they have available. There are many variations on this kind of pregame contracting,

see especially, Varian (1994), Ray and Vohra (1997), Caruana and Einav (2008) and

other work discussed in Jackson and Wilkie.

A somewhat different approach is exemplified by Lagunoff (1992). This literature

imagines that there is an initial phase in which the overall mechanism that agents will

use to decide on allocations is chosen. Thus, the entire form of the game is up for

discussion. Related to this is a literature that studies the optimal size of the agenda

in bargaining games. Lang and Rosenthal (2001), for example, explore whether it is

beneficial to bargain over a large agenda simultaneously or only over a subset. Again,

both of these papers and the literatures they represent consider macro-level alterations

of the whole game form through planning, voting, or negotiation. This is different

from the micro scale approach proposed here of allowing agents to voluntarily and

10 See, for example Osborne and Rubinstein (1990) as well as the other work discussed in this section.

11 Bade, Haeringer, and Renou (2006) allow agents to commit to a subset of actions, similar to our lists.
In their paper, though, lists only restrict choice while here lists both restrict choice and form the basis
on which matches are consummated.
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unilaterally restrict their strategy choices within a given game framework.

Alger and Renault (2006, 2007) examine a principal-agent model in which agents’

types are two-dimensional: they have an ethical type and a cost type. Honest agents

cannot lie about their cost type but they can lie about their honesty, while dishonest

agents can lie about both their ethical type and their cost type. The papers explore

the ability of the principal to screen agents according to ethical type when agents first

send messages about ethical type and then send messages about their cost type. Alger

and Renault’s model is similar to ours in that an agent’s type is related to whether

the principal wants to transact with him and restricts the transactions that can take

place. The principal must design a contract to induce an honest agent to reveal his

restricted strategy set. In our model the agent must reveal the restricted strategy set

or, put differently, the list is also the only signal available to the agent.12

Gilson and Mnookin (1994) present an informal model in which litigants can choose

lawyers with reputations for cooperation, and thereby commit to a more cooperative

litigation procedure than they would have been able to achieve otherwise. If one con-

siders choosing a lawyer as choosing a list, their informal model would be a special

case of ours. Croson and Mnookin (1997) find experimental support for the Gilson and

Mnookin model.

6. Remarks

Remark 1. Precommitment: There are several ways to model precommitment.

The most typical is for agents (monetary authorities, for example) to choose policies

that are irreversible in dynamic games. Another is contingent contracts that assure

your opponent that you will play in a certain way due to an ex post enforceable penalty

clause (most favored customer agreements, for example). In contrast, agents in our

12 In related work, Chen (2000) examines whether incomplete contracts can be socially preferable when
a subset of agents have strategy sets that restrict them from breaking promises.
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game have the option of narrowing the set of strategic options open to themselves and

do so in response to the choices made by the population of agents at large. Contingent

contracts are not allowed and the potential equilibrium outcomes are, in principle, richer

than could be obtained from requiring that agents choose only a single strategy for all

time at the beginning of the game. The results are also different: in some cases, many

different social norms can emerge as equilibrium outcomes while in others (high search

costs) only the one-shot Nash equilibrium will be seen despite the possibility of altering

the game. Perhaps most importantly, committing not to play certain strategies in the

pregame is only optimal because agents can also choose their opponents/partners. No

agent would choose to limit his strategic options in the prisoners dilemma if he did

not have the option of declining to play with an aggressive opponent. Thus, while

the approach we take does have an element of precommitment, the form it takes, the

elements that inform its use, and the results it yields are different from what is typically

seen in the literature.

Remark 2. Learning, Ethics and Observability: We motivate the pregame in two

ways which we see as independently interesting. One reason that strategies might be

unavailable to me is that I may have never learned them. For example, telling lies

to cover one’s tracks takes practice and learning how to attract the opposite sex is

difficult. Whether or not an agent has learned certain skills is, at least to an extent,

observable. For example I might infer from your accent or word choice you can speak

Spanish. Thus, in some contexts learning makes the commitment not to employ a

strategy credible and also contributes to the observability of these commitments. We

might instead motivate removing options from a player’s strategy set as reflecting his

ethical framework. This is a kind of axiomatic approach to ethics with clear lines drawn

between what is permitted and what is prohibited. Again, there are frequently outward

signs of one’s choice of ethical framework and reasons to believe that agents will not

deviate from these internal standards of behavior. For example, observing an agent

in dress of an orthodox Jew allows us to infer something about his code of behavior.

Of course, one could alternatively treat excluded strategies as having large negative
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payoffs instead. It might very well be that the outcomes would be the same under this

alternative formation, but it seems more natural to us to treat things you have never

learned or you would never consider doing as simply excluded from your strategy set.

Finally, there are certainly examples of real world prisoners’ dilemmas and other games

in which it would be very hard to argue that ethics could constrain you from paying a

strategy or that any meaningful effort has to be put in to learn a strategy or that any of

this could be observable in any event. An example might be checkers. In this case, our

model would simply not apply. While we think the endogenous game we develop in this

paper has wide application, we certainly are making no claim of universal applicability.

7. Conclusion

We describe a research program that examines a new form of game in which both

players and the exact form of the game (strategy sets) are endogenously determined

through equilibrium play. We argue that such endogenous games are not uncommon

in the real world, and indeed may be more the rule than the exception. We explore

the granular prisoners’ dilemma and anti-prisoners’ dilemma in detail. We show that

if the search cost is low enough, the only robust equilibria can be seen as social norm

outcomes in which all agents cooperate to exactly the same degree.

We make a number of simplifying assumptions in showing these results and it

would be interesting to relax these. For example, we assumed that agents can perfectly

observe the list of the agent with whom he is matched. One might instead include

costly signaling about the lists agents choose, or perhaps probabilistic revelation of

lists as in Dekel, Ely, and Yilankaya (2007). We also assumed that it was costless to

learn strategies. While making learning costly in the PD games we explore here would

not change anything, in more general games it might make a difference. Finally, we

could allow agents who replace those who match out to choose their own strategies.

We think this will lead to somewhat different results, but not ones that give much new
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insight. For example, in the granular PD games, all agents match the period they are

born and so we could see each new generation settling on a new and different social

norm. This will dramatically increase the complexity of the equilibrium notion and

strictly increase the number of equilibrium outcomes. Nevertheless, we still see social

norms arising in each period.

This work could be extended in several directions. Most obviously, one could con-

sider other types of games. In separate work, we explore coordination and ultimatum

games. One could also move away from specific games to see what could be proven

about endogenous games in general. Finally, these games have a very simple structure

and it would be quite interesting to see if our theoretical results hold up to experimental

verification.

For the present, our point is to argue that if we have to convince people to play

games with us we might find it in our interests to change the sort of person we are. We

think this sheds new light on the important findings of the experimental and behavioral

literatures. It may be that agents are in fact behaving in a fully rational way given

the strategy sets they have available to them. The findings of these literatures may

therefore be seen as perhaps rejecting the embedded assumption that agents are playing

a specific game rather than that they are playing not in a fully rational way.

Appendix

In this appendix, we prove a series of lemmas that lead up to showing that es-
sentially nothing but norm strategies can be SPE. We begin by showing that only one
type of norm player can appear in equilibrium

Lemma 1. It is impossible for two types of social norm players to coexist in any SPE.

Proof/
Suppose there were two nonempty sets of norm players I x̂,x̂(S) and I x̄,x̄(S), x̂ 6= x̄,

at an SPE. Without loss of generality, suppose the expected payoff players in the set
I x̂,x̂(S) got was at least as big as the expected payoff to players in I x̄,x̄(S). Suppose
one agent i ∈ I x̄,x̄(S) chooses to become the other kind of norm player. The payoff to
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agents in I x̂,x̂(S) would go up since the addition of one new member would lower the
expected number of periods needed to find a partner with whom to play. Thus, it is
not a best response for agent i to choose to be a x̄ norm player instead of a x̂ norm
player and so this could not have been a SPE.

Next we show that if any wolf players exist in an SPE, there must also exist at
least one sheep player.

Lemma 2. If there exists any wolf player in an SPE, then there must also exist at
least one sheep player.

Proof/
Observe that wolf players will never play the stage game when paired with any

norm or other wolf player. If paired with a norm player who would agree to play
with him, it must be that the wolf player will choose to pass, and when paired with
a norm player with whom the wolf player would play the norm player would always
pass. Similarly, if two wolf players are paired, one of them will find that the other is
not cooperative enough and so will pass. It follows that if there are no sheep, the wolf
players will fail to play each period and so get a payoff of −z each period. On the other
hand, by defecting and becoming a complementary sheep, the worst they can do is get
a one-time payoff of −3. This is clearly a higher payoff so choosing to be a wolf is not
a best response when there are no sheep.

Lemma 3 shows that norm and sheep players will not both appear in equilibrium
when search costs are small enough.

Lemma 3. For z small enough, it is impossible for sheep and norm players to coexist
in any SPE.

Proof/
By Lemma 1, there can only exist one type of norm player at an SPE. We consider

two subcases.
First, suppose that the norm player and some kind of sheep player have strategies

that result in their agreeing to play when matched. Then norm players get a weakly
higher payoff if they are lucky enough to be matched with this kind of sheep compared
to what they receive when matched to another norm player. This is because such sheep
play stage game strategies that are at least as cooperative as the ones used by the norm
players. If the payoff is strictly higher, then for z small enough, waiting for these sheep
becomes less costly and it ultimately becomes more profitable for a norm player to wait
for these sheep than to agree to play with another norm player. Therefore, it is a best
response for any norm player to defect and become a complementary wolf. Observe
that this is also true if the payoff happens to be the same. In this case, sheep are
playing exactly the same stage game strategy as the norm players but would also play
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with a less cooperative wolf. Thus, by defecting and becoming this complementary
wolf, the payoff the defecting norm player receives is also higher when matched with a
sheep than playing the norm strategy with a sheep. As a result, the same logic applies

Second, suppose instead that for some kind of sheep appearing in the SPE, the
sheep and norm players won’t agree to play together. Then for any z, either the norm
player payoff is at least as high as the sheep player payoff or inversely. If the norm
payoff is larger, then by becoming a norm player, the sheep player increases the expected
payoff of norm players, himself included, since this reduces the time to find a match
while not changing the expected payoff to a successful match. If the sheep players get
at least as high a payoff as norm players, then opposite is true. By becoming a sheep
the expected time to find a match for all sheep goes down, while the expected payoff
to successful matches goes up.

Thus, sheep and norm players cannot coexist for small enough z.

Next we show that wolves and norm player will not be found together in an SPE
for small enough search costs.

Lemma 4. For z small enough, it is impossible for wolves and norm players to coexist
in any SPE.

Proof/
By Lemma 2, if wolves exist at an SPE then sheep also exist for small enough z.

But if sheep exist then by Lemma 3, no norm players can exist in an SPE for small
enough z. The conclusion follows.

The next Lemma shows that that as search costs get small, in the limit at most
one sheep can remain in any SPE. All the others will choose to defect and choose other
strategies.

Lemma 5. For z small enough, at most there will be one sheep agent in any SPE.

Proof/
Suppose there existed some type of sheep with at least two representatives in a

SPE for all z. All the other agents in the game must be either wolves or other sheep
by Lemma 3.

Suppose that z gets very small. Then the payoff from being the complementary
kind of wolf to this sheep approaches the stage game payoff (since the expected search
costs become zero in the limit). On the other hand, the expected payoff to being this
kind of sheep are strictly lower than the wolf payoffs since in all cases the sheep play a
more cooperative strategy when matched. It follows that if z is small enough, regardless
of what strategies the other players in the game choose, if there are least two of these
sheep, it is a best response for one of them to defect and become the complementary
wolf. (Note this does not hold if there is only one agent who chooses a given sheep
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strategy since by defecting, he obliterates his entire food supply. Also note that for
small enough z, the wolves will get a strictly higher payoff than the sheep, but the one
remaining sheep still cannot profitably defect because of the obliteration issue above.)

Now suppose that there are two agents who choose to be different kinds of sheep.
The same logic holds. At least one of these agents will be better off defecting and
becoming a complementary wolf to the other sheep for small enough z.

We conclude there will be at most one sheep at any SPE for small enough z.

Our last Lemma shows that when search costs are small, we will see at most one
kind of wolf in any SPE.

Lemma 6. For z small enough, at most there will be one kind of wolf at any SPE.

Proof/

By Lemmas 4 and 5, if wolves exist at an SPE, there can be no norm players and
at most one sheep for small z. If there is only one sheep, all wolves must be of the
complementary type. If they are too greedy and can’t match with the lone sheep, they
are better off becoming complementary wolves since then they get a positive payoff
instead of −z forever. If they are too generous and give away more than is necessary
play with the sheep, they should defect and become complementary wolves and get a
higher payoff. Thus, only complementary wolves will exist in equilibrium.

Putting these lemmas together allows us to prove that the types of equilibria shown
to exist in the body of the paper are in fact the only SPE that exist.

Theorem 4. For z small enough, only two types of SPE are possible: (1) all agents
using the same norm strategy (2) one sheep player and all other agents using the
complementary wolf strategies.

Proof/

Since we know that wolf, sheep and norm strategies exhaustively partition the
set of strategies that will be used in any SPE, by Lemma 1, at most one type of norm
strategy can appear in any SPE. By Lemmas 3 and 4, norm players will not be seen with
either sheep or wolf players in equilibrium when search costs are small enough. Lemmas
5 and 6, tell us that that for small enough z, there can be at most one kind of wolf
and one individual sheep player in any SPE. This means that the only configurations
possible for a SPE if z is small enough are (1) all agents using the same norm strategy
(2) one sheep player and all other agents using identical wolf strategies. Note that for
(2), the wolf strategy must be complementary to the one employed by the sheep since
this is only best response.
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