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Abstract

In this paper, we provide axiomatic foundations for social choice rules on
a domain of convex and comprehensive social choice problems when agents
have cardinal utility functions. We translate the axioms of three well known
approaches in bargaining theory (Nash [1950], Kalai and Smorodinsky [1975],
and Kalai [1977]) to the domain of social choice problems and provide an
impossibility result for each. We then introduce the concept of a reference
function which, for each social choice set, selects a point from which relative
gains are measured. By restricting the invariance and comparison axioms so
that they only apply to sets with the same reference point, we obtain charac-
terizations of social choice rules that are natural analogues of the bargaining
theory solutions.



1. Introduction

An n-person social choice set is a subset of <n representing the utility levels at-

tainable by the ν agents through some joint action or decision. A social choice rule is a

map defined on some domain of choice sets which for each choice set S selects a unique

point in S. A bargaining problem consists of a pair (S, d), where S is a social choice set

and d ∈ S (the disagreement point) is interpreted as the allocation agents receive if they

fail to reach an agreement. Given a class of bargaining problems, a bargaining solution

is a map that associates with each problem (S, d) a unique point in S. We may view

bargaining problems as a class of social welfare problems with additional structure. In

the axiomatic approach to social choice and bargaining theory, one proposes a list of

desirable axioms and attempts to show that they can be satisfied by one and only one

allocation rule. In this case, the axioms are said to characterize the social choice rule

or bargaining solution.

Despite the similarity between bargaining and social choice problems, the results

in the literatures appear in sharp disagreement. In the bargaining literature, there

are several well known solutions that have axiomatic characterizations. The solutions

examined in Nash [1950], Kalai [1977] and Kalai and Smorodinsky [1978] are notable ex-

amples. Since Arrow’s [1953] seminal paper, the most celebrated results in social choice

theory have been impossibility theorems. One difference between these two frameworks

is that bargaining theory typically assumes agents have von-Neumann Morgenstern util-

ity functions. However, Sen [1970] showed that Arrow’s impossibility result still holds

even if one restricts the social choice domain to include only agents who have cardi-

nal utility functions.1 Hence, we must search elsewhere to find an explanation for the

impossibility results in social choice theory.

Our main purpose in this paper is to investigate the reason for this contrast between

the bargaining and social choice literatures. The approach we take begins by translating

lists of axioms that characterize well known bargaining solutions to the domain of

1 Also see Kalai and Schmeidler [1977] for a similar result.
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convex and comprehensive social choice problems. This follows Sen [1970] and Myerson

[1978], who showed that no social choice rule can satisfy the natural counterparts of the

axioms that characterize the Nash bargaining solution. We continue this program by

showing that there is no social choice rule that satisfies the social choice counterparts of

either the sets of axioms that Kalai [1977] used to characterize the egalitarian solution,

or those used by Kalai and Smorodinsky [1978] to characterize the solution proposed

by Raiffa [1953].

Our main point is that this difference between possibility and impossibility may be

driven not so much by the absence of a disagreement point in social choice problems,

but more generally by the absence of any scale invariant point from which to measure

relative utility gains. Without such a point, the cardinal nature of the utilities is ignored

and the comparison axioms (such as Independence of Irrelevant Alternatives) are too

strong. Motivated by this observation, we follow Thomson’s [1982b] generalization of

the bargaining theory framework and introduce the notion of a reference function to

social choice problems. A reference function is simply a mapping from a class of social

choice sets into utility space which satisfies certain properties. Restating the bargaining

axioms on the domain of social choice problems which include reference functions now

allows us to obtain possibility theorems.

The reader should note that there are two essential differences between a reference

point and a disagreement point. First, a disagreement point must be specified as part of

the data of a bargaining problem. The reference point on the other hand, is a function

of the feasible set. Second, the disagreement point is interpreted as an allocation that

any agent can unilaterally impose on the others. The reference point has no such

interpretation, and may not even be in the feasible set. It is only a point from which

relative gains are measured. In Conley, McLean, and Wilkie [1994], we extend this

notion further to include the possibility of using a reference point to measure relative

losses as well as relative gains. In this paper, we define a class of reference functions

that allow us to characterize social choice rules that are analogous to the Nash, Raiffa

and egalitarian, [1953] bargaining solutions.

2



Explorations of the boundary between possibility and impossibility have a long

history in the social choice literature. We will not attempt to provide a comprehensive

survey here, but we conclude this section with a brief discussion of some closely related

papers.

There are two common approaches to regaining possibility results without allowing

interpersonal comparability of utilities. One can restrict the class of allowable utility

representations or one can limit the application of the independence axiom. For ex-

ample, Plott and DeMeyer [1971] restrict the domain of preferences to those which

are completely described by the “relative intensity” of preference over the alternatives.

They then weaken the independence axiom and obtain a characterization of a class

of social welfare functions. Note that the concept of relative intensity implies the use

of a baseline allocation from which gains and losses are measured. This serves the

same purpose as the reference point in this paper. More recently, Tsui and Weymark

[1995] examine the existence of a social welfare ordering when the utilities are ratio

scale measurable. They find that when negative utility values are allowed, if we re-

quire Pareto Optimality, then the social ordering must be dictatorial. However, when

utilities are restricted to be positive (and thus zero can serve as a reference point)

they obtain a characterization of the class of Cobb-Douglas social choice functions.

Roberts [1980] began a systematic examination of how weakening the independence

axiom compares with restricting the domain of allowable utilities. In particular, he

introduced the notion of “partial independence of irrelevant alternatives,” where the

independence requirement is applied only to the union of subsets of the choice set and

a particular fixed outcome. He established that if the utilities are scale invariant, then

partial independence axiom and Pareto optimality characterize the class of weighted

product of the player’s utility differences from the fixed outcome (similar to Theorem

4 here).2 D’Aspremont and Gevers [1987] provide characterizations of utilitarian and

leximin type solutions in a social choice framework. They explore the ways in which

2 See Roberts [1994] for an extension of these results.
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invariance axioms involve comparisons of relative gains across agents.3

The approach we take in this paper is especially close to that of Gibbard, Hyland

and Weymark [1987]. Their’s is the first paper of which we are aware to explicitly

examine the role of a fixed reference point to resolve the impossibility issue in the

classical social choice context. The authors consider the standard Arrovian framework,

but restrict the domain of choice sets to those for which a particular alternative is

contained in all sets in the domain. Gains can then be measured from this common

point. This weakening of the application of the independence axiom allows them to

obtain a positive result. More recently, Dhillon and Mertens [1993] argue that the

difference between possibility and impossibility is not whether the utility functions are

cardinal or ordinal, but whether or not gains can be compared. They support this view

by adapting Arrow’s axioms for a domain of social choice problems where agents have

von-Neumann Morgenstern utilities, and proving an impossibility result. They show,

however, that by normalizing the agents’ utilities and restricting the application of their

independence axiom, it is possible to characterize the “relative utilitarian choice rule.”

Again, the normalization implies the existence of a “zero point” from which gains are

measured. This literature supports our major thesis that the presence of a point from

which to compare relative utility gains of agents is an aspect of the boundary between

impossibility theorems and characterization results.

2. Definitions and Axioms

We start with some definitions and formal statements of the axioms used in the

characterizations. Given a point z ∈ <n and a set S ⊂ <n, we say S is z-comprehensive

if z ≤ x ≤ y and y ∈ S implies x ∈ S.4

3 See our discussion of Thomson’s [1981a] characterization of the utilitarian solution in section three for
more details on this point.

4 The vector inequalities are represented by ≥, >, and�.
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The comprehensive hull of a set S ⊂ <n, with respect to a point z ∈ <n is the smallest

z-comprehensive set containing S:

comp(S; z) ≡ {x ∈ <n | x ∈ S or ∃ y ∈ S such that z ≤ x ≤ y}.

The convex hull of a set S ⊂<n is the smallest convex set containing S. The convex

and comprehensive hull of a set S ⊂ <n with respect to a point z ∈ <n is the smallest

convex, z-comprehensive set containing S:

concomp(S; z) ≡ con(comp(S; z)).

Let C denote the space of non-empty compact subsets of <n. The Hausdorff distance

ρ : C × C → < is defined by,

ρ(S, S′) ≡ max

[
max
x∈S′

min
y∈S
‖ x− y ‖ ,max

x∈S
min
y∈S′

‖ x− y ‖
]

where ‖ • ‖ is the Euclidean norm. Let int(S) denote the interior of S, and ∂(S) the

boundary of S. Define the weak Pareto frontier of S as:

WP (S) ≡ {x ∈ S | y � x implies y 6∈ S}.

Define the strong Pareto frontier of S as:

P (S) ≡ {x ∈ S | y ≥ x implies y 6∈ S}.

We define the ideal point of S as

a(S) ≡ (max
x∈S

x1,max
x∈S

x2, . . . ,max
x∈S

xn),

and the nadir point of S as

ν(S) ≡ (min
x∈S

x1,min
x∈S

x2, . . . ,min
x∈S

xn).
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Note that neither the ideal point nor the nadir point need be a member of the social

choice set in general.

We consider several domains of social choice problems in this paper. First, define

the set of compact and convex social choice problems as follows:

Σcon ≡ {S ⊂ <n | S is compact , S = con(S) and int(S) 6= ∅.} .

The set of compact and nadir-comprehensive social choice problems is defined as:

Σcomp ≡ {S ⊂ <n | S is compact , S = comp(S; ν(S)) and int(S) 6= ∅.} .

Of particular importance in this paper will be domain of compact, convex and nadir-

comprehensive problems:

Σcc = Σcon ∩ Σcomp.

Finally, the set of strictly nadir-comprehensive social choice problems is defined as:

Σs.comp ≡ {S ∈ Σcomp | P (S) = WP (S).} .

A social choice rule, F, is a mapping from a class of problems Σ to <n such that for

each S ∈ Σ, F (S) ∈ S.

Next, we define the class of affine transformations and permutation operators. We

use the following convention: Given a and x in <n define a ·x as the inner product and

ax ≡ (a1 · x1, . . . , an · xn) ∈ <n.

A positive affine transformation λ = (a, b) ∈ <n++×<n maps x ∈ <n to ax+b ∈ <n

so that λ(S) ≡ {y ∈ <n | y = ax+ b, and x ∈ S} for each S ⊂ <n.

We will use the notation 1 for the vector (1, . . . , 1).

A permutation operator, π, is a bijection from {1, . . . , n} onto {1, . . . , n} and Πn

denotes the class of all such operators. For each π ∈ Πn, we abuse notation and define

π(x) = (xπ−1(1), xπ−1(2), . . . , xπ−1(n)) and π(S) = {y ∈ <n | y = π(x) and x ∈ S}.

A social choice set S is said to be symmetric if for all π ∈ Πn, S = π(S).
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We close this section by defining social choice equivalents of several axioms which

are commonly used in bargaining theory. Since social choice problems do not include

disagreement points as part of the data, this translation is accomplished by omitting

any reference to disagreement points.

Weak Pareto Optimality (WPO): F (S) ∈WP (S).

Pareto Optimality (PO): F (S) ∈ P (S).

Symmetry (SYM): If for all π ∈ Πn, π(S) = S, then if x = F (S), xi = xj for all i, j.

Translation Invariance (T.INV): For all x ∈ <n, F (S + x) = F (S) + x.5

Homogeneity (HOM): For any a ∈ <n++ such that ai = aj for all i, j, F (aS) = aF (S).

Scale Invariance (S.INV): For all affine transformations (a, b) ∈ <n++×<n, F (aS+b) =

aF (S) + b.

Continuity (CONT): If

{Sν}∞ν=1 is a sequence of problems, then ρ(S, Sν)→ 0 implies F (Sν)→ F (S).

Strong Monotonicity (S.MON): If S ⊂ S′, then F (S′) ≥ F (S).

Restricted Monotonicity (R.MON): If S ⊂ S′ and a(S) = a(S′) then F (S) ≤ F (S).

Independence of Irrelevant Alternatives (IIA): If S ⊂ S′ and F (S′) ∈ S, then F (S) =

F (S′).

3. The Impossibility Results

We prove three impossibility theorems in this section. We begin by considering

Nash’s [1950] solution for the domain of convex bargaining problems:

N(S, d) ≡ argmax
x∈S
x≥d

n∏
i=1

(xi − di),

5 Throughout the paper, we will not distinguish between a point x ∈ <n and a singleton set {x}.
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Nash proves that this is the only solution that satisfies the bargaining theory analogues

of WPO, SYM, S.INV, and IIA. Sen [1970] and Myerson [1978], however, proved that

there is no social choice rule that satisfies WPO, SYM, S.INV, and IIA on the domain

of convex problems. We include the following proof for completeness.

Theorem 1. On Σcc there is no social choice rule that satisfies PO, SYM, HOM,

T.INV, and IIA.

Proof/

Let n = 2 and S = con((1, 0), (0, 1), (0, 0)). By SYM and PO, F (S) = ( 1
2 ,

1
2 ). Let

a = (2, 2) and define S′ = aS. By HOM, F (S′) = (1, 1). Now define S′′ = S + (0, 1).

By T.INV, F (S′′) = ( 1
2 , 1

1
2 ). However,

F (S′) = (1, 1) ∈ S′′,

and S′′ ⊂ S′. Thus, by IIA, F (S′′) = (1, 1) 6= ( 1
2 , 1

1
2 ), a contradiction.

Remark 1.1. S.INV implies HOM and T.INV. Thus, on our domain, Theorem 1

implies Sen’s result.

Remark 1.2. The comprehensiveness assumption is not required for this result.

Remark 1.3. In Conley, McLean, and Wilkie [1994] we define a “dual” scale invariance

axiom and use it to characterize the minimum Euclidean distance solution advocated

by Yu [1973]. This axiom implies both HOM and T.INV. Thus, Theorem 1 implies

that there is no choice rule that satisfies the social choice counterparts of the axioms

used in that paper.

Thomson [1981a] proves the utilitarian choice rule, u(S) = argmaxx∈S
∑
xi, satis-

fies PO, SYM, T.INV, and IIA, and is the only such choice rule. The utilitarian choice

rule also satisfies homogeneity, and hence Thomson’s result seems to violate the above

theorem. However, Thomson’s theorem holds on the domain of strictly convex feasible

sets. On the domain of convex choice sets, the set of maximizers of the function u

above may not be single valued and hence the utilitarian choice rule is not well defined.
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Thomson suggests that the utilitarian rule may be interpreted as choosing the same

allocation as the Nash bargaining solution “in the limit” where the disagreement point

is (−k, . . . ,−k) as k approaches infinity. See Thomson [1981a] for further discussion.

Moulin [1988, Theorem 2.3], proves that, on the space <n++, the Nash social

welfare ordering is characterized by axioms similar to those above, apart from T.INV.

If we confine all choice sets to lie within the positive orthant, then a social choice rule

can be defined by selecting the maximal element in the choice set with respect to the

Nash social welfare ordering. However, this result cannot be extended to <n. Indeed,

Moulin shows that his characterization is equivalent to Nash’s bargaining theorem

where the disagreement point has been normalized to zero. In the absence of such a

prespecified point from which to measure utility gains, the approach described above

fails.

Kaneko and Nakamura [1975] consider a slightly different domain. They consider

an environment in which there is a convex set of pure alternatives, X, and a particular

least desirable alternative x0. They then define the set of mixed alternatives M as the

set of lotteries over X ∪ x0. They show that the modified Nash social welfare function,

w(S) = argmaxm∈M
∑

ln(ui(m)− ui(x0))

is the only solution to satisfy versions of weak Pareto optimality, anonymity, continuity,

and IIA. appropriately modified for their domain of problems. They obtain a positive

result because they assume the existence of a least desirable point. Again, this allows

them to use the image of this point in utility space as an origin from which to measure

utility gains.

We now consider the solution proposed by Raiffa [1953], and characterized by Kalai

and Smorodinsky [1975] with bargaining versions axioms of SYM, S.INV, WPO, and

R.MON. This solution, denoted R, is defined as follows:

R(S, d) ≡ t∗d+ (1− t∗)a(S), where t∗ = min{t ∈ <+ | td+ (1− t)a(S) ∈ S}.

We show below that no solution can satisfy the counterparts of these axioms on

the domain of comprehensive social choice problems.
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Theorem 2. On Σcc there is no social choice rule that satisfies WPO, SYM, S.INV,

and R.MON.

Proof/

Let n = 2 and S = comp(con((0, 4), (3, 3), (4, 0)); (−4,−4)). By SYM and WPO,

F (S) = (3, 3) ≡ x. Let T = con((2,−2), (−2, 2), (1 1
6 , 1

1
6 )). By SYM and WPO,

F (T ) = (11
6 , 1

1
6 ) ≡ y. Let U = aT + b where a = (1, 2) and b = (2, 0). Thus,

U = con((4,−4), (0, 4), (3 1
6 , 2

1
3 )). By S.INV, F (U) = ay + b = (3 1

6 , 2
1
3 ). However,

U ⊂ S and a(U) = a(S) = (4, 4), and therefore R.MON implies F (U) ≤ (3, 3). Since

(3 1
6 , 2

1
3 ) 6≤ (3, 3), we have a contradiction.

Remark 2.1. The convexity assumption is not required for the above result.

Kalai [1977] examines the properties of an alternative bargaining solution. He

defines the egalitarian solution, E, as

E(S, d) ≡ d+ (t∗)1, where t∗ = max{t ∈ <+ | d+ t1 ∈ S},

and shows that this is the only solution satisfying the bargaining counterparts of the

axioms SYM, T.INV, WPO, HOM, and S.MON. Note that the egalitarian solution

cannot satisfy scale invariance since gains must be shared equally. Equal division of

gains implies a common scale on which such gains can be weighed. On the other hand,

egalitarian solutions are translation invariant since, when both the disagreement point

and the feasible set are moved by the same amount, equal division of gains results in

the same final allocation. We now show that no choice rule can satisfy the counterparts

of these axioms on the domain of convex and comprehensive social choice problems.

Theorem 3. On Σcc there is no social choice rule which satisfies WPO, SYM, T.INV,

and S.MON.

Proof/
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Let n = 2, S = con((2, 0), (0, 2), (0, 0)), and T = con((1, 0), (0, 1), (0, 0)). By SYM

and WPO, F (S) = (1, 1) and F (T ) = ( 1
2 ,

1
2 ). Let U = T + (0, 1). By T.INV, F (U) =

( 1
2 , 1

1
2 ). However U ⊂ S and therefore by S.MON, F (U) ≤ (1, 1). a contradiction.

Remark 3.1. The convexity assumption is not required for the above result.

4. Possibility with Reference Points

In the previous section, we showed that it is impossible for social choice rules to

satisfy the sets of axioms most commonly used in bargaining theory. The difference

between social choice and bargaining problems is the absence of a disagreement point in

the former. In this section, we argue more generally that it is the absence of a reference

point from which to measure gains, of which the disagreement point is just a special

case, which drives these impossibility results. We illustrate this by providing a charac-

terization of Nash, egalitarian and Raiffa social choice rules using axioms that include

reference functions in their statements. We conclude that positive results are possible

on the social choice domain if we have reference points satisfying certain requirements.

We begin with some technical details. Define ∆ to be the line of points of equal

coordinates :

∆ ≡ {x ∈ <n|xi = xj ∀ i, j}.

Given a set S, let S̄ be the smallest symmetric set in Σcc containing S in the sense of

set inclusion, and let S be the largest symmetric set in Σcc contained in S. Note that

when S ∈ Σcc, S̄ will always exist, but S need not exist. It is straightforward to show

that S̄ = concomp{∪π∈Πnπ(S)}, and S = ∩π∈Πnπ(S).

Next, we follow Thomson [1981b] and define a class of suitable reference functions.

In general, a reference function is an arbitrary mapping from a domain of problems into
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<n. In this paper, we restrict attention to the class G of reference functions defined on

Σcc which satisfy the following:

a. Translation invariance: for all a ∈ <n, g(a+ S) = a+ g(S).

b. g(S) is a reference point: g(S) ∈ comp(S; ν(S)) and there exists x ∈ S such that

x >> g(S).

c. Symmetric regularity: If S is symmetric, then g(S) ∈ ∆

d. Continuity: g is continuous with respect to the Hausdorff topology.

Properties (a) and (c) are straightforward. Since the reference point is used as a

basis from which to measure gains, condition (b) requires that it be a suitably chosen

element of the feasible set. Property (d) is a technical assumption.

We will use three subclasses of G in the following results. Let us define:

G1 = {g ∈ G|g is scale invariant and [g(S) = 0⇒ g(S̄) = 0]}

G2 = {g ∈ G|g is scale invariant and [g(S) = 0 and a(S) ∈ ∆⇒ g(S) = 0] if S exists}

G3 = {g ∈ G|g is homogeneous and [g(S) = 0⇒ g(S) = 0] if S exists}

Our proofs require the construction of certain symmetric sets similar to S with the

same reference point and the above classes of functions ensure that this is possible.6

We give examples of plausible reference functions in each class in section 5 below.

Consider the following adaptation of the Nash solution to social choice problems:

Ng(S) ≡ argmax
x∈S

x≥g(S)

n∏
i=1

(xi − gi(S)).

Our proposal differs from Nash’s bargaining solution in that utility gains are mea-

sured from the reference point instead of an exogenously specified disagreement point.

Similarly, our proposal differs from that of Kaneko and Nakamura [1975] in that they

6 We thank a referee for comments that lead to these conditions, which considerably simplify the expo-
sition and proofs.
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measure utility gains from a pre-specified worst outcome that is a member of every

choice set. In our framework, this would correspond to taking the nadir point function,

ν, as the reference function.

We show below that this solution may be characterized on the domain Σcc by

axioms analogous to those used by Nash. Notice that in the axiom below, we restrict

the application of the independence axiom to those choice sets with the same reference

point.

g-Restricted Independence of Irrelevant Alternatives (g-IIA): If S ⊂ S′, g(S) = g(S′)

and F (S′) ∈ S, then F (S) = F (S′).

The proof of the next theorem is a straightforward adaptation of the proof of

Proposition 1 in Thomson [1981b], which we include for the sake of completeness.

Theorem 4. For all g ∈ G1, a social choice rule F satisfies SYM, S.INV, PO and g-IIA

on Σcc if and only if F = Ng.

Proof/

The proof that Ng satisfies the axioms on Σcc is elementary and is omitted. Con-

versely, let S ∈ Σcc be given. By the compactness and convexity of S, and property

(b) of the reference function, Ng(S) is well defined and unique. By S.INV we may nor-

malize S such that g(S) = 0 and Ng(S) = 1. By construction of Ng, S is supported

at the point 1 by the hyperplane
∑
xi = n. Hence S̄ is well defined and is supported

at the point 1 by the hyperplane
∑
xi = n. Thus, by SYM and PO, we have that

F (S̄) = 1. Now because g ∈ G1, we have that g(S̄) = 0. Since S ⊂ S̄, g(S) = 0 = g(S̄)

and F (S̄) = 1 ∈ S, it follows from g-IIA that F (S) = F (S̄) = 1 = Ng(S).

Remark 4.1. The comprehensiveness assumption is not required for the above result.

Next we introduce the class of the Raiffa choice rules, Rg:

Rg(S) ≡ t∗g(S) + (1− t∗)a(S), where t∗ = min{t ∈ <+ | tg(S) + (1− t)a(S) ∈ S}.
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The axioms used are the counterparts of those used by Kalai and Smorodinsky

[1975] to characterize the Raiffa bargaining solution on the domain of convex problems

with two agents, except that only weak Pareto optimality is used. The generalization

to more agents is not immediate since R does not satisfy even Weak Pareto Optimality

on Σcon for n > 2, see Roth [1980]. This difficulty does not arise on the domain of

comprehensive problems, and so we use Σcc in the treatment that follows. For further

discussion see Kalai and Smorodinsky (1975), Thomson (1994) and Conley and Wilkie

[1992].

Again we restrict application of the comparison axiom to sets with the same ref-

erence point.

g-Restricted Monotonicity (g-R.MON): If S ⊂ S′, g(S) = g(S′) and a(S) = a(S′), then

F (S′) ≥ F (S).

Theorem 5. For all g ∈ G2, a social choice rule F satisfies SYM, S.INV, WPO, CONT

and g-R.MON on Σcc if and only if F ≡ Rg

Proof/

The proof that Rg satisfies the axioms is elementary and is omitted. Conversely

let F be a choice rule satisfying the axioms. Assume that S ∈ Σcc ∩Σs.comp. By S.INV

the problem can be normalized so that g(S) = 0 and a(S) = (β, . . . , β) ≡ y. Then

Rg(S) = (α, . . . , α) ≡ x for some α > 0. For i = 1, . . . , n, let ai be a vector in <n such

that aii = β and aij = 0 for all j 6= i. Let T = con(0, a1, a2, . . . , an, x). Since T ∈ Σcc

is a symmetric subset of S, we know that S must exist. Since g(S) = 0, a(S) ∈ ∆,

and g ∈ G2, it follows that g(S) = 0. Since S is symmetric, x ∈ T and x ∈ S,

it follows that x is the only symmetric element in WP (S). Thus, WPO and SYM

imply that F (S) = x. Now T ⊂ S ⊂ S and a(T ) = a(S) by construction. Therefore,

a(S) = a(S) = y so g−R.MON implies that F (S) ≥ F (S) = x. Since S ∈ Σs.comp, we

conclude that F (S) = x.

To complete the proof, let S be an arbitrary set in Σcc. and let {Sν} be a sequence

of sets in Σs.comp ∩Σcc such that Sν → S. Applying the argument above for each such

Sν , we conclude that F (Sν) = Rg(Sν). However, g is continuous and Rg is continuous,
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and so we know that F (Sν) → Rg(S) = x. Therefore, by CONT, we conclude that

F (S) = x.

Remark 5.1. The assumption of convexity is not required for Theorem 5. The proof

can be completed following the technique used in Conley and Wilkie [1991].

Remark 5.2. For g ∈ G2 the choice rule Rg does not satisfy Pareto Optimality when

there are more than two agents as shown by the following example:

Let S ⊂ <3 = con((0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)), and let g =

ν. Then ν(S) = (0, 0, 0) and a(S) = (1, 1, 1), thus Rν(S) = ( 1
2 ,

1
2 ,

1
2 ), which is Pareto

dominated by ( 1
2 ,

1
2 , 1) ∈ S.

We now define a generalized egalitarian solution with respect a to reference function

g:

Eg(S) ≡ g(S) + 1t∗, where t∗ = min{t ∈ <+ | g(S) + 1t ∈ S}.

We also need to modify the axiom of S.MON to take account of the reference function

g.

g-Strong Monotonicity (g-S.MON): If S ⊂ S′ and g(S) = g(S′), then F (S′) ≥ F (S).

Theorem 6. For all g ∈ G3, a social choice rule F satisfies WPO, SYM, T.INV, CONT

and g-S.MON on Σcc if and only if F ≡ Eg.

Proof/

The proof that Eg satisfies the five axioms is elementary and is omitted. Conversely

let F be a solution satisfying the five axioms. Given S ∈ Σcc ∩ Σs.comp, we can

assume by T.INV that the problem has been normalized so that g(S) = 0. Thus,

Eg(S) = (α, . . . , α) ≡ x for some α > 0. Let T = comp(x; 0). Since T ⊂ S, T ∈ Σcc

and T is symmetric, it follows that S exists. Since T ⊂ S ⊂ S, x ∈ WP (S), and

x ∈ T , it follows that x ∈ WP (S). Thus, by SYM and WPO, F (S) = x. From the

definition of G3, it follows that g(S) = 0. Since g(S) = g(S) and S ⊂ S, it follows
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from g-S.MON that F (S) ≥ x. Since x ∈ P (S), we can apply WPO to conclude that

F (S) = x = Eg(S).

To extend the theorem to an arbitrary set in Σcc, take a sequence of sets {Sν} in

Σs.comp ∩ Σcc such that Sν → S. Applying the above argument to each such Sν , we

conclude that F (Sν) = Eg(Sν). The continuity of g implies that Eg is also continuous

so that F (Sν)→ Eg(S) = x. Therefore by CONT it follows that F (S) = x = Eg(S).

Remark 6.1. As in the case of Theorem 5, the assumption of convexity is not required

for Theorem 6. Again, the proof can be completed following the technique used in

Conley and Wilkie [1991].

5. Discussion

In section 4, we defined the classes of reference functions G1, G2 and G3, that

are “compatible” with the Nash, Raiffa and egalitarian solutions, respectively. Each

of the classes is defined by properties that are satisfied by the nadir point mapping.

In particular, ν(·) ∈ G1 ∩ G2 ∩ G3, see Corollary 1 below. For the classes Gi to be

more interesting however, we must show that each class contains more than the nadir

point mapping. In the results that follow we provide examples of reference functions

in each class different from the nadir point mapping. Each of these may be though of

as a “compromise” between the nadir point map and some other reasonable reference

point.

To begin we need a simple lemma that provides the relationship between the nadir

point and the ideal point of the sets S, S̄, and S.

Lemma 1. Let S ∈ Σcc. Then ν(S̄) = (mini∈N{νi(S)})1 and

a(S̄) = (maxi∈N{ai(S)})1. If S exists, then

ν(S) = (maxi∈N{νi(S)})1 and a(S) = (mini∈N{ai(S)})1.
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Proof/

Recall that S̄ = concomp{∪π∈Πnπ(S)}, and S = ∩π∈Πnπ(S) when S exists. Let

x̄ = mini∈N{νi(S)}1. Clearly x̄ ≤ z for all z ∈ S̄. Furthermore, there exists for

each i a point zi ∈ ∪π∈Πnπ(S) such that (zi)i = mini∈N{νi(S)}. Hence νi(S̄) =

mini∈N{νi(S)} for each i, and x̄ = ν(S̄). The other arguments are similar.

We now turn to the examples.

Theorem 7. If α ∈ [0, 1
n [ and g : Σcc → <n is given by g(S) = (1 − α)ν(S) + αa(S),

then g ∈ G1.

Proof/

It is straightforward to show that conditions (a), (c), and (d) in the definition of

a reference function are satisfied. To show that (b) is satisfied, note that for each i,

(ν−i(S), ai(S)) ∈ S where (ν−i(S), ai(S)) is the point ν(S) with ai(S) replacing νi(S).

Convexity implies that

∑
i∈N

1/n(ν−i(S), ai(S)) = ν(S) + 1/n[a(S)− ν(S)] ∈ S.

Since 0 ≤ α < 1/n and a(S) >> ν(S) it follows that

ν(S) + 1/n[a(S)− ν(S)] >> g(S) ≥ ν(S).

Hence condition (b) is satisfied, and g ∈ G.

To show that g ∈ G1, note that both a(·) and ν(·) are scale invariant so g is scale

invariant. Now choose S such that g(S) = 0. It remains to show that g(S̄) = 0. From

Lemma 1, it follows that ν(S̄) = (mini∈N{νi(S)})1 and a(S̄) = (maxi∈N{ai(S)})1.

Choose j such that aj(S) = maxi∈N{ai(S)}. Since gj(S) = (1−α)nj(S)+αaj(S) = 0,

it follows that, νj(S) = mini∈N{νi(S)}. Therefore,

0 = (1− α)νj(S)1 + αaj(S)1 = (1− α)ν(S̄) + αa(S̄) = g(S̄)
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and the proof is complete.

Theorem 8. If α ∈ [0, 1[ and g : Σcc → <n is given by g(S) = (1− α)ν(S) + αRν(S),

then g ∈ G2.

Proof/

It is straightforward to show that g ∈ G. To show that g ∈ G2, note that scale

invariance follows from the scale invariance of a(·) and ν(·). Now choose S such that

g(S) = 0 and a(S) ∈ ∆, and suppose that S exists. It remains to show that g(S) = 0.

First, note that there exists λ ∈]0, 1[ such that Rν(S) = λν(S) + (1 − λ)a(S). Since

g(S) = 0 it follows that [(1− α) + αλ]ν(S) = −α(1− λ)a(S). Therefore, as a(S) ∈ ∆

we conclude that ν(S) ∈ ∆ and Rν(S) ∈ ∆. Applying Lemma 1, it follows that

ν(S) = maxi∈N{νi(S)})1 = ν(S) and a(S) = mini∈N{ai(S)})1 = a(S), so that

{Rν(S)} = ∆ ∩WP (S). To complete the proof note that Rν(S) ∈ WP (S). (If not,

then there exists x ∈ S such that x >> Rν(S). Since x ∈ S and Rν(S) ∈ WP (S) we

have a contradiction.) Hence, Rν(S) ∈ ∆ ∩WP (S) = {Rν(S)} from which it follows

that Rν(S) = Rν(S). Since ν(S) = ν(S) we conclude that g(S) = g(S) = 0 and the

proof is complete.

Theorem 9. If α ∈ [0, 1
n [ and g : Σcc → <n is given by g(S) = (1 − α)ν(S) +

α(mini∈N{ai(S)})1, then g ∈ G3.

Proof/

Using the arguments of Theorem 7, it is straightforward to show that g ∈ G.

To show that g ∈ G3, note that the homogeneity of g follows from the homogeneity

of ν(·) and a(·). Now choose S ∈ Σcc with g(S) = 0 and suppose that S exists.

Since g(S) = 0, it follows that ν(S) ∈ ∆, so Lemma 1 implies that ν(S) = ν(S) and

a(S) = mini∈N{ai(S)})1. Therefore g(S) = g(S) = 0, and the proof is complete.
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The following result is an immediate consequence of the previous three theorems.

Corollary 1. If g : Σcc → <n is the nadir point mapping, ν(·), then g ∈ G1∩G2∩G3.

6. Conclusion

We make two points in this paper. First, we show several impossibility theorems

for social choice rules. We argue that the reason for these negative results is that the

comparison axioms are too strong when we have no means of measuring the relative

gains or losses of agents. Second, we suggest that Thomson’s [1982b] idea of defining

social choice rules with reference points is one way to recover possibility theorems. We

discuss this idea at greater length in Conley, McLean, and Wilkie [1994]. Thus, it

is not the existence of the disagreement point that make characterizations of solution

concepts possible in bargaining theory and impossible in social choice theory. Rather,

the disagreement point is a special case of the more general idea of a reference point

from which the relative utility gains and losses of agents may be measured.
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